This mapping study is part of the initial stage of a Global Development Network (GDN) project supported by the Inter-American Development Bank (IDB) that aims to strengthen the research capabilities of institutions in 17 relatively small countries of Latin America and the Caribbean. Central to achieving the outcomes of the project, and indeed its point of departure, is a mapping/diagnostic study that identifies actors and issues relevant to research capacity and its contribution to public policy in the countries of focus. This paper provides a synthesis of the three “country group” studies, and covers: the objectives and methodology used for the “mapping” or “diagnostic” studies; an overview of the country groups, including major differences and similarities within each group; and, emerging findings in terms of the production and use of social science research, and of research priorities based on the views of interview and survey respondents. It also flags knowledge and information gaps encountered and offers some conclusions, including implications for the next steps in the broader project.
ACKNOWLEDGEMENTS

THE GLOBAL DEVELOPMENT NETWORK WOULD LIKE TO EXPRESS ITS APPRECIATION FOR THE SUPPORT IT HAS RECEIVED FROM THE INTER-AMERICAN DEVELOPMENT BANK IN RESPECT OF THIS REPORT AND THE ENTIRE PROJECT. THE IDB AND GDN SHARE A COMMON INTEREST IN ENHANCING POLICY RELEVANT SOCIAL SCIENCE RESEARCH IN LATIN AMERICA AND THE CARIBBEAN. THIS PROJECT WILL HELP INFORM SUCH EFFORTS.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>4</td>
</tr>
<tr>
<td>Recommendations for Future Steps in the Project</td>
<td>14</td>
</tr>
<tr>
<td>Introduction and Overview</td>
<td>16</td>
</tr>
<tr>
<td>Objectives of The Mapping/Diagnostic Studies</td>
<td>18</td>
</tr>
<tr>
<td>Research, Researchers and Research Organisations</td>
<td>18</td>
</tr>
<tr>
<td>Policy Actors and Other Research Users</td>
<td>19</td>
</tr>
<tr>
<td>Public Expenditure, Health and Education</td>
<td>19</td>
</tr>
<tr>
<td>Research and Policy Interests and Priorities</td>
<td>19</td>
</tr>
<tr>
<td>Overview of Country Groups</td>
<td>19</td>
</tr>
<tr>
<td>Methodology/Approach Used and Challenges Encountered</td>
<td>20</td>
</tr>
<tr>
<td>Country Group 1 – The Caribbean (Bahamas, Barbados, Domínican Republic, Jamaica, Trinidad & Tobago, Guyana and Suriname)</td>
<td>21</td>
</tr>
<tr>
<td>Major Differences/Similarities Across the Caribbean Country Group</td>
<td>22</td>
</tr>
<tr>
<td>Country Group 2 – South America (Ecuador, Bolivia and Paraguay)</td>
<td>26</td>
</tr>
<tr>
<td>Major Differences/Similarities Across the South America Country Group</td>
<td>27</td>
</tr>
<tr>
<td>Country Group 3 – Central American (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama)</td>
<td>29</td>
</tr>
<tr>
<td>Major Differences/Similarities Across the Central America Country Group</td>
<td>30</td>
</tr>
<tr>
<td>Emerging Findings: Production of Research</td>
<td>34</td>
</tr>
<tr>
<td>Emerging Findings – Research Organisations</td>
<td>40</td>
</tr>
<tr>
<td>Emerging Findings: Research Use By Policy Actors</td>
<td>48</td>
</tr>
<tr>
<td>Emerging Findings: The General Research Environment</td>
<td>53</td>
</tr>
<tr>
<td>Emerging Findings: Research Needs and Priorities</td>
<td>58</td>
</tr>
<tr>
<td>Research Priorities Identified in the Caribbean Country Group</td>
<td>58</td>
</tr>
<tr>
<td>Priorities Identified in the Central America Country Group</td>
<td>59</td>
</tr>
<tr>
<td>Priorities Identified in the South America Country Group</td>
<td>61</td>
</tr>
<tr>
<td>Conclusions</td>
<td>62</td>
</tr>
<tr>
<td>Recommendations for Future Steps in the Project</td>
<td>69</td>
</tr>
</tbody>
</table>
Executive Summary

This study is the initial stage of a Global Development Network (GDN) project that aims to strengthen the research capabilities of institutions in 17 relatively small countries of Latin America and the Caribbean.\(^1\)

The GDN and the Inter-American Development Bank (IDB), who fund the project, wish to better understand the particular constraints faced by small countries in respect of the production and use of policy-oriented social science research. Central to achieving the outcomes of the project, and indeed its point of departure, is a “mapping/diagnostic” study that identified actors and issues relevant to research capacity and its contribution to public policy in the 17 countries of focus. This paper provides a synthesis of the three “country groups”, and covers:

- The objectives of the “mapping” or “diagnostic” studies;
- An overview of the country groups, highlighted major differences and similarities, and the methodology used for the mapping;
- The emerging findings from the country groups, in terms of the production of social science research, the use of research by various policy actors, and research priorities based on views expressed by interview and survey respondents. It also flags knowledge and information gaps encountered; and,
- Conclusions arising from the mapping study, including implications for the next steps in the broader project.

“Mapping” looked at the general environment for production and use of social science research in the countries covered in each group. It is important to note that the mapping did not assess the quality of research produced by national researchers, except insofar as capturing perceptions of research quality from all survey respondents (including researchers).

Because the focus of the project is on research capacity within small countries, the mapping did not include research activities undertaken by North American or European organisations or researchers. For example, quite a number of American and Canadian universities undertake research projects, or study programmes in LAC, but do not expressly engage in building institutional research capacity within the countries visited. That said, some of the research referred to by respondents was supported by regional or international research capacity building initiatives such as TTI, GDN, PEP, LACEA, etc.

Despite some very obvious similarities (10 of the seventeen countries are in the “high human development” grouping of the UNDP’s Human

\(^1\) The countries of focus in the project are the Bahamas, Barbados, Belize, Bolivia, Costa Rica, Dominican Republic, Ecuador, El Salvador, Guatemala, Guyana, Honduras, Jamaica, Nicaragua, Panama, Paraguay, Suriname, and Trinidad & Tobago.
Development Index (HDI), with the remaining seven in “medium human development” group) and many shared interests (e.g. impact of climate change, ocean and coastal management, trade and regional integration), the countries in the three group are by no means homogenous.

According to the 2015 HDI, the global country rankings range from a high of 55 (Bahamas) to a low of 131 (Honduras), which is one rank lower than India.

Comparative quantitative data on the production and uptake of policy oriented research is always difficult to find, although there are several accepted proxies for social science research capacity that can be used to compare the 17 countries. These are:

- A country’s statistical capacity;
- Its production of general social science research publications; and,
- Its more specialised research publication production in economics/finance, health and education.

Statistical capacity is a highly relevant indicator in respect of a country’s research capacity because it is such a fundamental enabler of so many types of research. Statistical capacity has recently come under sharp focus in relation to the need for data associated with the Post 2015 Global Development Goals. As Table 1 indicates, countries in the study range from a high of 91.1 (El Salvador) to a low of 54.4 (Belize), with several countries are under the LAC average score of 77.3.

Table 1 – Statistical Capacity (Overall Average) 2015

<table>
<thead>
<tr>
<th>Country</th>
<th>Indicator score as the average of the scores of the 3 dimensions (Availability, Collection, Practice)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latin America and Caribbean</td>
<td>77.3</td>
</tr>
<tr>
<td>Bahamas</td>
<td>--</td>
</tr>
<tr>
<td>Barbados</td>
<td>--</td>
</tr>
<tr>
<td>Belize</td>
<td>54.4</td>
</tr>
<tr>
<td>Bolivia</td>
<td>78.9</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>84.4</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>78.9</td>
</tr>
<tr>
<td>Ecuador</td>
<td>72.2</td>
</tr>
<tr>
<td>El Salvador</td>
<td>91.1</td>
</tr>
<tr>
<td>Guatemala</td>
<td>72.2</td>
</tr>
<tr>
<td>Guyana</td>
<td>56.7</td>
</tr>
<tr>
<td>Honduras</td>
<td>76.7</td>
</tr>
</tbody>
</table>
Table 2 below looks specifically at social science research, drawing on the Scimago Journal & Country Rank portal that includes the journals and country scientific indicators developed from the information in the Scopus database. It includes all categories of social science research in Scimago ranking portal (although Scimago does not include economics under social sciences).

Trinidad & Tobago, Jamaica, Ecuador and Costa Rica stand out, although it is interesting to contrast Trinidad & Tobago’s leadership in research publication, with its relatively low score on statistical capacity, which has declined from 75.6 in 2008 to 56.7 in 2015.

Table 2 – All Social Science Publication Indicators

<table>
<thead>
<tr>
<th>Country</th>
<th>Indicator score as the average of the scores of the 3 dimensions (Availability, Collection, Practice)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jamaica</td>
<td>77.8</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>70.0</td>
</tr>
<tr>
<td>Panama</td>
<td>78.9</td>
</tr>
<tr>
<td>Paraguay</td>
<td>72.2</td>
</tr>
<tr>
<td>Suriname</td>
<td>62.2</td>
</tr>
<tr>
<td>Trinidad & Tobago</td>
<td>56.7</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahamas</td>
<td>27</td>
<td>6</td>
<td>26</td>
<td>47</td>
</tr>
<tr>
<td>Barbados</td>
<td>15</td>
<td>28</td>
<td>16</td>
<td>216</td>
</tr>
<tr>
<td>Belize</td>
<td>28</td>
<td>5</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>Bolivia</td>
<td>16</td>
<td>26</td>
<td>15</td>
<td>318</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>11</td>
<td>57</td>
<td>13</td>
<td>453</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>22</td>
<td>8</td>
<td>22</td>
<td>82</td>
</tr>
<tr>
<td>Ecuador</td>
<td>9</td>
<td>67</td>
<td>14</td>
<td>386</td>
</tr>
<tr>
<td>El Salvador</td>
<td>20</td>
<td>13</td>
<td>20</td>
<td>109</td>
</tr>
</tbody>
</table>

2 http://www.scimagojr.com/countryrank.php?area=3300&category=0®ion=Latin+America&year=2013&order=it&min=0&min_type=it

2 http://www.scimagojr.com/countryrank.php?area=3300&category=0®ion=Latin+America&year=all&order=it&min=0&min_type=it
Table 3 looks more specifically at three areas of research publication of interest to this project, from the same source. In respect of economics, the pronounced ranking of Jamaica, Trinidad & Tobago remains prominent, along with Bolivia’s rank in health research.

Table 3 – Rankings in Selected “Social Sciences” Publication (1996-2014)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Guatemala</td>
<td>17</td>
<td>23</td>
<td>17</td>
<td>203</td>
</tr>
<tr>
<td>Guyana</td>
<td>29</td>
<td>5</td>
<td>21</td>
<td>90</td>
</tr>
<tr>
<td>Honduras</td>
<td>35</td>
<td>2</td>
<td>24</td>
<td>72</td>
</tr>
<tr>
<td>Jamaica</td>
<td>12</td>
<td>52</td>
<td>11</td>
<td>541</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>21</td>
<td>10</td>
<td>18</td>
<td>140</td>
</tr>
<tr>
<td>Panama</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>137</td>
</tr>
<tr>
<td>Paraguay</td>
<td>27</td>
<td>7</td>
<td>25</td>
<td>57</td>
</tr>
<tr>
<td>Suriname</td>
<td>40</td>
<td>1</td>
<td>41</td>
<td>10</td>
</tr>
<tr>
<td>Trinidad & Tobago</td>
<td>13</td>
<td>52</td>
<td>10</td>
<td>550</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>ECONOMICS, ECONOMETRICS & FINANCE</th>
<th>HEALTH</th>
<th>EDUCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahamas</td>
<td>36</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Barbados</td>
<td>11</td>
<td>77</td>
<td>23</td>
</tr>
<tr>
<td>Belize</td>
<td>26</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td>Bolivia</td>
<td>15</td>
<td>40</td>
<td>9</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>10</td>
<td>84</td>
<td>16</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>18</td>
<td>23</td>
<td>19</td>
</tr>
<tr>
<td>Ecuador</td>
<td>13</td>
<td>73</td>
<td>14</td>
</tr>
<tr>
<td>El Salvador</td>
<td>28</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>Guatemala</td>
<td>17</td>
<td>35</td>
<td>17</td>
</tr>
<tr>
<td>Guyana</td>
<td>21</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>Honduras</td>
<td>19</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>Jamaica</td>
<td>9</td>
<td>89</td>
<td>12</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>20</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>Panama</td>
<td>22</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>Paraguay</td>
<td>24</td>
<td>10</td>
<td>27</td>
</tr>
<tr>
<td>Suriname</td>
<td>38</td>
<td>2</td>
<td>33</td>
</tr>
<tr>
<td>Trinidad & Tobago</td>
<td>12</td>
<td>75</td>
<td>8</td>
</tr>
</tbody>
</table>
The mapping was undertaken to focus on four areas of knowledge. Key aspects of these are noted below accompanied by the main conclusions drawn from the survey and interviews.

The first objective was to develop a picture of the **nature of research and researchers present in each of the countries of focus, and the variety and types of organisations doing research**. Mapping sought to reveal what has occupied research attention, where researchers are based (e.g. think tanks, CSO’s, private sector organisations, government agencies, universities), their profile (e.g. age, gender, education, institutional affiliation, capacity building experiences). In addition, the survey sought information on how research was supported, who drives the demand for research, preferences for different types of professional development, researchers’ experience in policy engagement, and the perceived value of different types of capacity building.

By and large information on all these dimensions was obtained, taking into account the limitations of the mapping and relatively small number of respondents. Three key conclusions are especially noteworthy:

1. **The institutional research environment** -- The first obvious aspect is the much more visible presence of think tanks in Latin America than the Caribbean group. Although the small size of island states presents significant barriers to stand alone national think tanks, efforts to develop regional independent think tanks have not been very successful to date. In the specific countries included in the Caribbean, the Dominican Republic seems to have the most visible think tank community, and operates much more in common with Central and South American countries (including having self-described think tanks that are more advocacy organisations than research bodies).

In the Central and South American countries a vibrant network of think tanks has emerged, and although many play a advocacy role more than they engage in technical production of research, there is clearly an emerging regional “think tank” sector. There are also some strong research networks in the region, although many that refer to themselves as LAC networks are only marginally active in the Caribbean.

All three country groups include countries that are heavily reliant on one or two small, not so well endowed universities. There are also examples in all three country groups of universities that have developed exceptionally high quality programmes, and a few that are formally pan-national schools. In respect of synergies, it would be useful for GDN and others to consider how the regions top think tanks and universities might play a stronger role in research capacity building in small countries where human and financial resources are limited.
Despite the differences among the countries in the three groups, researchers in Latin America are a growing segment of the academia sector, in some countries increasingly involved in working closely with the private sector, universities, international donors and civil society. The most significant characteristics of this group are its relatively young age (especially in countries where the majority of researchers have only undergraduate degrees), the close to equitable participation among men and women in research, the growing cadre with foreign experience such as post-graduate studies, and the growing numbers involved in multi-sector or cross-disciplinary networks.

2. The relatively low production of research as measured by conventional publication metrics in many countries of all three groups -- Earlier parts of this Executive Summary provided some indication of the research publication experience in all the study countries. Figures on journal publication are undoubtedly an important metric, and are an established indicator of national and institutional research activity. However the picture is not fully complete without a better indication of the overall population of researchers, the capacity or trends in the higher education sector in terms of “production” of graduates doing research, and a more comprehensive understanding of the varieties of research being produced. It is also important to be measured in accepting publication figures as an absolute indicator of research quality (although citation rates are a widely accepted indicator), nor of policy relevance or utility.

Researcher population figures are somewhat challenging as comparative international data favours research and development, mostly related to science, technology and innovation (STI). This misses potentially large segments of the research population who are engaged in social sciences, natural sciences, humanities, etc. Nor is available data all that complete for many countries in this study.

For example, of the 17 countries in this mapping study, WDI indicators on the researcher population (measured by FTE per million people between 2005 and 2012) are available only for seven countries (Bolivia, Costa Rica, Ecuador, Guatemala, Panama, Paraguay and Uruguay). Only two of these – Costa Rica and Uruguay – are above the LAC average of 492 researcher FTEs per million, at 1,327 and 537 pm, respectively.

UNESCO’s figures are somewhat more encouraging. It charts significant growth in the absolute number of researchers (FTE) in a few of the countries. For example, Costa Rica had a researcher population of 6,107 in 2011, up from 548 in 2003, Ecuador, saw a

3 FTE – full time equivalent
growth from 983 researchers in 1996 to 2,735 in 2011. Figures for
Caribbean countries are not available.4

In research output, the 2014 figures are somewhat more
comprehensive. For the Caribbean group, Barbados tops the list of
scientific publications per million people at 182, followed most
closely by Trinidad & Tobago (109), and the Bahamas (86). Jamaica
stands at 47 (Grenada, by contrast is 1,430). For the other two
country groups, the figures cluster as follows: a high of 241
(Uruguay); followed by Costa Rica (96), Panama (83), Ecuador (32),
and Bolivia (19); the remainder between nine and four publications
per million people.

Most published research in CARICOM relates to health, led by
Jamaica from the country group. The share of social science
research is very small according to UNESCO's 2008-2014
cumulative figures. For example, the Bahamas produced four social
science publications compared to 42 in agriculture, and six in
psychology. In absolute numbers, Trinidad's social science output
for the same period is more than three times that of any other
country in the Caribbean group.

For the Central and South America country groups, the absolute
number of all publications, as well as social science publications, is
much higher -- for example 33 for Costa Rica, and 21 for Uruguay --
however the share of social sciences among other fields is not all
that different from that of the Caribbean countries (though research
in "life sciences" rather than "education" dominates in Latin
America). UNESCO's figures do not disaggregate within the social
sciences, so it is hard to know what sub-disciplines or topics
dominate publication.

The picture of growth in research is somewhat discouraging. In
scientific publication trends between 2005 and 2014, Jamaica has
gone down from a high of roughly 175 publications in 2012 to 117
in 2014. Barbados and Suriname are also on a downward trend.
Guyana, while starting from 14 in 2005 has gone up and down and
stands at 23 in 2014. The Bahamas has grown from eight to 33 in
the same period. Publication trends in the Central and South
American country groups are more positive, with growth rates in
the number of scientific publications since 2005 for Uruguay (94%),
Ecuador (151%), Costa Rica (57%) and Bolivia (72%). All the other
countries recorded positive trends but at lower rates.

As the UNESCO report points out, countries with “modest” research
output can have among the highest citation rates. For the 2008-
2012 period, research from Bolivia, Costa Rica, Ecuador and
Panama was above the G20 average citation rate. It is worth noting
that in every country in the two groups, the majority of published

articles have foreign co-authors. With foreign co-authorship rates ranging from a low of 70.4% in Uruguay, to a high of 97.6% in Honduras, all countries in the group are well above the G20 average of 24.6% (only Brazil is close to this average at 28.4%).

The higher education picture is quite different, at least in Latin America where figures are provided by UNESCO. The vast majority of first degree graduates are in social sciences (56% in 2012), compared to next nearest cohort of engineering and technology graduates (15.3%). The share of PhD graduates is also highest for social sciences and humanities (48%), with natural sciences following at 14.75%. Up to 2000, these two fields were much closer in relative size, and at one point natural sciences dominated. When one looks at the number of doctoral graduates per million inhabitants in LAC in 2012, the picture in the country group is dim to modest, ranging from 1 in Ecuador to a high of 25 in Paraguay. By contrast Brazil is 70, which is higher than China and South Africa at 39 and 36 respectively.

There are several “take-aways” from this picture:

1. That addressing the low level of post graduate-level trained researchers needs to be a priority in some countries. The large numbers of researcher (almost 40% in some countries) with training that has stopped at the undergraduate level has significant implications for research quality, and makes efforts to improve graduate rates and programmes a priority, and more important than they might be in other countries.

2. There is a need for so-called compensatory training and development – specifically professional development that makes up for the lack of academic coverage and levels of education that researcher are getting. Even among researchers with doctoral level training, the surveys indicated a desire for better exposure to non-degree professional development and training, such as in research methods and other technical skills (i.e. survey design). Both researchers and non-researchers in almost all countries expressed a view that the quality of research training in national universities was weaker than it should be.

3. The absence of a more systematic, comprehensive and comparative mechanism for monitoring the social science research environment at a national level, emphasising research use in the context of public policy, is clearly a gap. Surveys and mapping activities like this study can provide a picture but:

 a. are not much more than a snapshot;
 b. tend to overstate the anecdotal; and,
 c. have uneven coverage of many stakeholders.

It would be worth further exploring the utility and possible design features of an indexing instrument that can be applied at
regular intervals to assess the societal visibility of research at a national level. This might include monitoring such things as research references in print, radio and television, in web and social media, and in public policy documents such as speeches, announcements, sector plans and strategies, consultation papers, etc.

The second objective was to develop a picture of the current and potential audiences for research primarily, but not exclusively, in the focus countries. Mapping looked at the audiences for policy oriented research (policy actors), their involvement in research demand as well as in funding.

The mapping evidenced some interesting differences in perspective on issues ranging from research quality, capacity building and research needs as seen from the perspectives of those who use research and those who produce research.

Spaces for engagements between policymakers and researchers appear to be limited. The interviews with users and producers of research portray a lack of engagement and understanding of each other’s needs and capacities. Both groups acknowledge that donors can play a brokerage role, by connecting and facilitating dialogue on a research topic.

Researchers face difficulty identifying critical bottlenecks and research questions for policy relevant research. The survey brought out some general research priorities. However, in the interviews carried out, the researchers had difficulty clearly identifying policy relevant specific questions.

Facing the challenge of being under continuous scrutiny from a more educated population, policy actors can, should they choose, become more explicit in demanding involvement of researchers and research institutions in assessing alternative ways to address a wide range of problems present in the region. Currently the opportunities for policy actors to articulate research needs, support mobilisation of research resources, and align timing and relevance are limited. The interest expressed by several senior officials in having a comprehensive national research index or framework underscores this. To many policy actors, the research needs/supply picture of their country is at present highly fragmented and abstruse.

Capacity development is also relevant to policy users, whether in enhancing informed decision-making on research design (to the point of being able to distinguish whether or not a research proposal will address the questions required) and in enhancing communication from researcher to policy actors within and outside of government. To inform thinking on capacity development strategy, including that of this research project, the mapping has identified the perceptions of researchers and users of research on a wide range of capacity gaps. For example, researchers prioritize developing their communication skills,
while users of research believed that researchers need to improve their methods and analytical skills.

The third objective was to capture the extent to which research and policy attention has focused on public expenditure analysis generally, and on research specific to health and education in the countries of focus. Mapping sought to compare the level of research attention given to public expenditure analysis and/or service delivery with other areas of research attention by national researchers, as well as the policy actors’ interest in the same areas.

Closely related to this was the fourth objective of informing understanding of views on what the major areas for policy oriented research attention should be for the next 5 years. It sought to obtain perceptions of priorities and the drivers of research priorities, and to understand how research related to public expenditure in education and health is situated among other perceived priorities. Both areas are intertwined.

As is apparent from the surveys, health and education research are both among the top areas of current and recent activity by significant numbers of researchers (46% and 35% respectively), although a much smaller number (27%) indicated activity in public expenditure analysis. However, a significant number indicated experience in programme evaluation and impact evaluation, each of which does or should involve aspects of expenditure analysis, at least in respect of examining the relationship between outcomes and cost.

It is also worth underscoring how researchers saw the top research needs of their country: 65% indicated health; 70% indicated education; 59% indicated public expenditure analysis; and, 67% indicated impact evaluation. Only economic development and employment/livelihoods received higher rankings (76% respectively).

Policy actors’ experience and views, not surprisingly, differ somewhat from those of researchers. In respect of research subjects of interest to policy actors in the past 10 years, the top three subjects were health, education and programme evaluation (51% each), followed closely by impact evaluation (48%), and public expenditure review (38%). All other subjects received lower response rates.

In terms of perceived research needs, policy actors cited in descending order of priority: economic development (72%); health (60%); environment (56%); employment/livelihoods (52%); growth and inequality, and programme evaluation (48% each); education and social protection (44% each); public expenditure reviews and impact evaluation (40% each).

Interviews with policy actors add to this picture of potential demand.

Instead of focusing on the size of budgets, policy actors are increasingly interested in alternative approaches to solving education and health problems. This is partly related to increasing concern about
transparency and accountability of funds used for social programs, as well interest in the effectiveness of alternative policies and services.

The main take-aways in this area are:

1. That regardless of whether GDN follows researchers’ views on research needs or those of policy actors, there is sufficient commonality of interest to justify a focus on health and education research in the next stage of the project. For the six projects anticipated from across the 17 countries, it will not be difficult to find interested researchers or policy actors interested in these subjects. A more challenging aspect will be:
 a. to decide if both health and education as broad subjects can be properly accommodated in a single project that only involves six research grants. It is worth considering choosing one or the other, and if so, probably selection of health would better reflect policy interest; and,
 b. to determine within the subject(s) what specific researchable issues would resonate most.

2. It might also be useful to broaden somewhat the notion of research on health or education being approached solely through the lens of public expenditure. Given the interest in programme evaluation and impact evaluation, a conceptual framework that accommodates assessing the outcome of a specific policy or programme intervention (i.e. a new law, regulatory changes, an intervention to enhance access or uptake or service quality, etc.) can probably accommodate both financial and non-financial analysis.

3. Because of the widespread challenges in research-policy interaction, it could be helpful to use the March 2016 policy lab as a forum for refinement of the specific researchable issues. This will increase the likelihood of policy interest in the project, enhance cross-country comparability of findings, and ensure the research questions will yield answers that are useful to policy actors, and not only respond to researchers’ interests as is often the case.

Recommendations for Future Steps in the Project

Although the previous section has already flagged potential recommendations, a more sequenced set of ideas is provided below:

1. Because of the challenges of a 17 country “open” call, and limited number and size of grants, restrict the research stage to 2 countries from each of the country groups. Alternatively, because of the small number of countries in the South American group, preselect:
 a. two countries from the Caribbean group (Dominican Republic and Jamaica are suggested);
 b. three countries from the Central America group (TBD); and,
 c. a single country from among the three South America countries.
This does not preclude the option of one research team covering two countries if acceptable to the policy actors involved (see below).

2. Structure the “call” to focus on two dimensions:
 a. researchers’ technical experience in health and/or education research (depending on whether both are included) and their experience in programme evaluations, impact evaluations and/or public expenditure analysis. do not require research proposals but rather seek statements of experience and capability; and,
 b. encourage researcher applicants to undertake preliminary policy engagement and describe this as part of their statement, including a description of specific discussions with ministries and CSOs to demonstrate interest in research. GDN might provide a guidance note for researchers to provide to policy actors, to introduce the project. In addition, GDN might directly advice policy actors in some or all selected countries and let them source or identify prospective researchers. Submissions should still be considered if it does not include information from possible policy participants but those that include some evidence of policy interest should be given more attention.

3. Ensure that policy actors and researchers from each country are present for the policy lab, and drop a country that cannot provide both.

4. Structure the project’s policy lab to have three components:
 a. a high level methodological review on ways to approach programme or impact analysis that includes assessment of public expenditure effectiveness. It should be structured to help policy actors appreciate what makes good research of this kind;
 b. a structured discussion of specific policy questions associated with the health or education interventions that could be subject of research attention; and,
 c. presentations by researchers, reflecting on the lab discussions and presenting initial suggestions on their respective research designs, for open peer and resource person feedback.

5. Following the policy lab, researchers should be given a relatively short period of time (say a month) to come back to GDN with full research plans that have been “signed off” by policy actors during discussions back in their respective countries.

These ideas mean that policymakers would be an integral part of the policy lab, and that researcher participants will be assisted in effective engagement that they otherwise may not do so well at. Consideration should be given to inclusion of topical experts from regional and international organisations who are already at the GDN conference, even if they are not from the selected countries.
Introduction and Overview

This study is the initial stage of a Global Development Network (GDN) project that aims to strengthen the research capabilities of institutions in 17 relatively small countries of Latin America and the Caribbean.5

The GDN and the Inter-American Development Bank (IDB), who fund the project, wish to better understand the particular constraints faced by small countries in respect of the production and use of policy-oriented social science research. The project complements other work being done by GDN, especially its current “Doing Research” project.6

Many assume that many of the challenges and constraints faced in doing policy relevant research are similar across most low income countries. This project will help identify what, if any, are challenges or constraints specific to small nations. Although this project is concerned with all types of policy-oriented research, it is especially interested in research capacity relevant to public expenditure analysis and better service delivery in education and health.

Four terms are used throughout this paper that deserve early definition:

1. The project is concerned with **policy-oriented** research, meaning research that is undertaken with the objective of informing public and political discourse on a particular issue, and acting as a source of evidence to support policy decision-making.

2. In addition to interested research users in regional and international organizations, national **policy actors** include a potentially large group of people who may use a variety of research outputs, including research reports, underlying data, policy briefs, presentations, web and print materials, blogs, etc. Policy actors potentially include political and public service officials, journalists, civil society groups, the private sector and members of the public.

3. The project’s focus on **social sciences** encompasses a variety of disciplines such as economics, political science, human geography, demography and sociology as well as some fields in the humanities such as anthropology or law, and involves a number of conceptual and methodological approaches as identified in the survey instrument in Annex A. It is worth emphasising that from a public

5 The countries of focus in the project are the Bahamas, Barbados, Belize, Bolivia, Costa Rica, Dominican Republic, Ecuador, El Salvador, Guatemala, Guyana, Honduras, Jamaica, Nicaragua, Panama, Paraguay, Suriname, and Trinidad & Tobago.

6 The “Doing Research” pilot project seeks to develop a comprehensive understanding of the factors (pertaining to policy framework, institutional factors, and informal relations) that influence the organization of social science research, its quality, quantity and social relevance. The pilot project expects to make significant contribution to the development of a systematic methodological framework for measuring research environment and research productivity in developing countries. See more at: www.gdn.int/dr
policy perspective, the need for national research is broader than the social sciences can provide. A number of informants identified interests that fall within the natural and life sciences, or noted the need for complementary attention in relation to specific issues. For example, climate change or agricultural research that could be usefully complemented by research on the potential impact on shocks on families or communities in terms of livelihoods, food security, or poverty, approached through social science methods like small-N case studies or social network analysis.

4. Lastly, the term LAC is used to refer to Latin America and the Caribbean in its entirety; for example, when comparing data among the “country groups” in this study, with averages for LAC.

The overall project involves several interconnected activities, including:

- Identification of information requirements and the current knowledge and institutional gaps that need to be addressed in order to strengthen research capabilities to deliver evidence-based policy recommendations;
- Strengthening of research capacities of national research centres in relatively small countries in the region, through mentoring and technical guidance throughout the production of research papers;
- Knowledge transfer and exchange of research methodology through peer-review workshops; and;
- Strengthening relationships/links among policymakers, research centres, think tanks, and researchers of the beneficiary countries to share and build on specific models that foster efficiency in public expenditure.7

Central to achieving the outcomes of the project, and indeed its point of departure, is a “mapping/diagnostic” study that identified actors and issues relevant to research capacity and its contribution to public policy in the 17 countries of focus. This paper provides a synthesis of the three “country groups”, and covers:

- The objectives of the “mapping” or “diagnostic” studies;
- An overview of the country groups, highlighted major differences and similarities, and the methodology used for the mapping;
- The emerging findings from the country groups, in terms of the production of social science research, the use of research by various policy actors, and research priorities based on views expressed by interview and survey respondents. It also flags knowledge and information gaps encountered; and,
- Conclusions arising from the mapping study, including implications for the next steps in the broader project.

7 Further information on the project can be found on the GDN website: http://www.gdn.int/html/page11.php?MID=3&SID=24&SSID=81
Objectives of the Mapping/Diagnostic Studies

Three mapping/diagnostic studies have been undertaken, each covering a different “country group” as follows:

- Group 1 – Caribbean (Bahamas, Barbados, Dominican Republic, Jamaica, Trinidad & Tobago, Guyana and Suriname), undertaken by Joseph Hoffman based in Toronto, Canada;

- Group 2 – Ecuador, Bolivia and Paraguay, undertaken by Andrea Ordóñez based in Quito, Ecuador;

- Group 3 – Central American countries (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama), undertaken by Jorge Benavides, based in Guatemala City, Guatemala.

Each mapping study used a common framework, and the study team developed a common set of interview and on-line survey questions to help provide some uniformity in coverage and comparability of findings. Because of cost limitations, site visits and face-to-face interviews were very limited and could only be undertaken in a single country within each country group (specifically Guatemala, Ecuador and Jamaica). Other countries were covered by desk study (document review, web search), email and Skype interviews, and the web-based survey developed by the mapping team (Annex A). This paper integrates the three country group reports into a single “Mapping/Diagnostic Synthesis Report”.

Admittedly this largely desk and survey approach is an imperfect way to “map” the research environment in so many countries. The results are inevitably somewhat uneven, and the opportunities for substantive discussions with country actors has been very limited. Nonetheless, the mapping does contribute to a picture of the social science research environment, as well as provide some insights on how different actors see the need for capacity building, and how they see research priorities. Later in the project, there will be an opportunity to use “Policy Labs” to engage in further discussions with national researchers and policy actors from the at least some of the focus countries. This will also provide a chance to validate the findings of the mapping studies.

Within each country group, the mapping focussed on four areas of knowledge summarised below.

Research, Researchers and Research Organisations

The objective was to develop a picture of the nature of research and researchers present in each of the countries of focus, and the variety and types of organisations doing research. Mapping sought to reveal what has occupied research attention, where researchers are based (e.g. think tanks, CSO’s, private sector organisations, government agencies, universities), their profile (e.g. age, gender, education, institutional affiliation, capacity building experiences). In addition, the survey sought information on how research was supported, who drives the demand for research, preferences for different types of professional
development, researchers’ experience in policy engagement, and the perceived value of different types of capacity building.

Policy Actors and Other Research Users
The objective here was to develop a picture of the current and potential audiences for research primarily, but not exclusively, in the focus countries. Mapping looked at the audiences for policy oriented research (policy actors), their involvement in research demand as well as in funding. It looked at views on the quality of research, perceptions of research training and other forms of capacity building, including but not limited to research communication, policy engagement and dissemination.

Public Expenditure, Health and Education
The objective here was to capture the extent to which research and policy attention has focused on public expenditure analysis generally, and on research specific to health and education in the countries of focus. Mapping sought to compare the level of research attention given to public expenditure analysis and/or service delivery with other areas of research attention by national researchers, as well as the policy actors’ interest in the same areas.

Research and Policy Interests and Priorities
The objective here was to inform understanding of similarities and differences in views on research priorities from the perspective of researchers, research organisations and policy actors, including views on what the major areas for policy oriented research attention should be for the next 5 years. It sought to obtain perceptions of priorities and the drivers of research priorities, and to understand how research related to public expenditure in education and health is situated among other perceived priorities.

Overview of Country Groups
“Mapping” looked at the general environment for production and use of social science research in the countries covered in each group. It is important to note that the mapping did not assess the quality of research produced by national researchers, except insofar as capturing perceptions of research quality from all survey respondents (including researchers).

Because the focus of the project is on research capacity within small countries, the mapping did not include research activities undertaken by North American or European organisations or researchers. For example, quite a number of American and Canadian universities undertake research projects, or study programmes in LAC, but do not expressly engage in building institutional research capacity within the countries visited. That said, some of the research referred to by respondents was supported by regional or international research capacity building initiatives such as TTI, GDN, PEP, LACEA, etc.
Methodology/Approach Used and Challenges Encountered

Three activities formed the core of the mapping process:

- A search for any country/regional literature that addresses research capacity development and/or use;
- A survey instrument used by respondents on-line, on paper or during interviews with mapping team members; and,
- Key informant interviews conducted in person or by phone/skype with a subset of respondents in specific countries.

The latter explored in more depth issues to do with research needs and use, especially related to views on research priorities. The mapping provides a useful picture of the research environment in three main areas: the production of research; the use of research by various policy actors; and, perspectives from both groups on the national research environment and on research priorities. The following sections summarise emerging findings in each area, drawing on the desk review, interviews and survey responses.

Figure 1 below provides the breakdown of respondents across the three country groups. Interestingly, 71% and 58% respectively of respondents from the Caribbean and South American groups were women, compared with 32% in the Central American group.

Figure 1 – Distribution of Survey Respondents by Country
The majority of respondents (47%) were researchers. 21% of respondents described themselves as “users of research working in a government body” – a figure that does not include people interviewed who did not complete the survey – and 7% were “users of research in a non-government body”. Almost 16% of respondents were administrators/managers in a research organization (e.g. a think tank or university).

It is worth noting that in the Caribbean group very few researchers identified think tanks as their institutional affiliation, in contrast to the Central America group, where none of the researcher respondents identified a university affiliation (all identified their affiliation as a think tank).

Country Group 1 – The Caribbean (Bahamas, Barbados, Dominican Republic, Jamaica, Trinidad & Tobago, Guyana and Suriname)

It is important to note that this was not a mapping study of “the Caribbean”, but rather that of a somewhat arbitrarily selected group of countries within the Caribbean, based on recommendations of IDB staff.

As noted in the introduction, the group includes Bahamas, Barbados, Dominican Republic, Jamaica, Trinidad & Tobago, Guyana and Suriname. Though neither Guyana nor Suriname are island states like the other six, it was felt by the study team that they had greater affinity to the countries in the Caribbean group than to either of the other country groups. Only Jamaica was visited for the purposes of the mapping study because: i) it is one of the largest countries in the group and somewhat of a regional “hub”; and, ii) because of the team member’s familiarity with the research and policy communities in that country.

The Caribbean country group covers an extraordinary geographic space. The two countries furthest from each other (the Bahamas and Suriname) are roughly 3,270 Km apart. Only two of the seven countries have a contiguous border (Guyana and Suriname), with the remainder being island nations. The group includes one half of the only island in the world that is shared between two sovereign states (the Dominican Republic and Haiti) that do not also have territory elsewhere. Among the seven countries three major national languages are used (English, Spanish and Dutch).

Notwithstanding this mix of features, many countries within the group have significant institutional linkages in governance (e.g. the Caribbean Public Health Agency (CARPHA) a new single regional public health agency), in policy, trade and regional integration (e.g. CARICOM), and in higher education and research (e.g. the Tropical Agricultural Research and Higher Education Center (CATIE), the University of the West Indies, and the Caribbean Academy of Sciences).

Despite some very obvious similarities (six of the seven countries are in the “high human development” grouping of the UNDP’s Human Development Index (HDI), and many shared interests (e.g. impact of climate change, ocean and coastal management, trade and regional integration), the country group is by no means homogenous.

According to the 2014 HDI, the global country rankings range from a high of 51 (Bahamas) to a low of 121 (Guyana), which is one rank lower than Iraq. The rankings for Barbados and Trinidad & Tobago are reasonably close (59 and 64 respectively), as are the rankings for Jamaica, Suriname and the Dominican Republic (96, 100 and 102 respectively).

The basket of indicators drawn from the World Bank’s World Development Indicators (WDI) for 2014 provided in Table 4 below, underscores both similarities and differences across the country group. For example, the populations of the Dominican Republic and Jamaica are outliers within the group, with 10.4 and 9.7 million respectively. By contrast, three countries in the group each have a population that is close to or significantly below 0.75 million.

Table 4 – Selected WDI Indicators (2014)

<table>
<thead>
<tr>
<th></th>
<th>Bahamas</th>
<th>Barbados</th>
<th>Dominican Republic</th>
<th>Guyana</th>
<th>Jamaica</th>
<th>Suriname</th>
<th>Trinidad & Tobago</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pop, total (mil.)</td>
<td>0.36</td>
<td>0.28</td>
<td>10.41</td>
<td>0.76</td>
<td>2.72</td>
<td>0.54</td>
<td>1.35</td>
</tr>
<tr>
<td>GNI per capita, PPP $</td>
<td>22,290</td>
<td>14,830</td>
<td>12,600</td>
<td>7,290</td>
<td>8,490</td>
<td>16,130</td>
<td>26,080</td>
</tr>
<tr>
<td>Life expectancy at birth, total (years)</td>
<td>75</td>
<td>75</td>
<td>73</td>
<td>66</td>
<td>73</td>
<td>71</td>
<td>70</td>
</tr>
<tr>
<td>GDP growth (annual %)</td>
<td>1.0</td>
<td>0.2</td>
<td>7.3</td>
<td>3.8</td>
<td>1.3</td>
<td>2.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Agriculture, value added (% of GDP)</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>18</td>
<td>7</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Industry, value added (% of GDP)</td>
<td>21</td>
<td>14</td>
<td>27</td>
<td>35</td>
<td>21</td>
<td>49</td>
<td>57</td>
</tr>
<tr>
<td>Services, value added (% of GDP)</td>
<td>77</td>
<td>84</td>
<td>67</td>
<td>46</td>
<td>73</td>
<td>44</td>
<td>43</td>
</tr>
</tbody>
</table>

Variance in GNI per capita is one of the most apparent differences across the group. The Bahamas’ GNI is three times that of Guyana’s; similarly, the GNI per capita of Trinidad & Tobago is more than three

8 Bracketing these countries are Albania (at 95), and the Maldives (at 103 and falling into the HDI’s “medium human development” group, which includes Guyana).
times that of Jamaica. Other differences of note are that Guyana’s agricultural value added is more than double that of the Dominican Republic, Jamaica and Suriname. Guyana has by far the largest agriculture sector (18% value added), and is well above the LAC average of 5% of GDP agricultural share (for 2014). Only Guyana and Suriname have industry value added that is higher than the LAC average of 30% of GDP.

Reflecting the project’s special interest in public expenditure in health and education, Table 2 provides a comparison of WDI expenditure indicators which is illuminating, though less so in education for which only data on half the country group is available.

It is not unreasonable to infer a correlation between a country’s expenditure on tertiary education and its research capacity, whether this includes research done within universities or outside universities by graduates. The data in Table 5 below clearly indicates that Guyana’s expenditures (tertiary education and total education expenditure as a % of total government expenditure) are significantly lower than the only available comparators in the group.

Table 5 – Selected WDI Education and Health Expenditure Indicators (2013)

<table>
<thead>
<tr>
<th></th>
<th>Bahamas</th>
<th>Barbados</th>
<th>Dominican Republic</th>
<th>Guyana</th>
<th>Jamaica</th>
<th>Suriname</th>
<th>Trinidad & Tobago</th>
<th>LAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education (2013 except where noted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tertiary Expenditure per student (% of GDP per capita)</td>
<td>--</td>
<td>52.4</td>
<td>--</td>
<td>14.5</td>
<td>40.1</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Government expenditure on education (% of GDP)</td>
<td>-- (in 1999)</td>
<td>5.6</td>
<td>3.7</td>
<td>3.2</td>
<td>6.3</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Government expenditure on education (% of total govt expenditure)</td>
<td>--</td>
<td>13.7</td>
<td>20.6</td>
<td>10.3</td>
<td>20.6</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Health (2013)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public health expenditure (% of total public expenditure)</td>
<td>44.0</td>
<td>61.0</td>
<td>52.2</td>
<td>66.2</td>
<td>57.2</td>
<td>70.8</td>
<td>48.0</td>
<td>52.7</td>
</tr>
<tr>
<td>Health expenditure per capita (PPP$)</td>
<td>1688</td>
<td>1060</td>
<td>631</td>
<td>426</td>
<td>512</td>
<td>744</td>
<td>1663</td>
<td></td>
</tr>
</tbody>
</table>

In public expenditure in health, the Bahamas and Trinidad & Tobago are beneath the LAC average as a % of total public expenditure, while Suriname is significantly above the average.

Regrettably, there is not (yet) a global or regional index of research capacity. However, a proxy sense of the policy/research environment
can be inferred from the selection of WDI and Scopus indicators provided in Tables 3 and 4 below. Table 6 provides indicators related to internet use/access, scientific and technical journal publications, and national statistical capacity, each of which contributes to the policy/research environment within each country and across the group.

Table 6 – Selected WDI “Research” Relevant Indicators

<table>
<thead>
<tr>
<th>Information Society (2013), Science and Technology (2011), and Statistical Capacity (2014)</th>
<th>Bahamas</th>
<th>Barbados</th>
<th>Dominican Republic</th>
<th>Guyana</th>
<th>Jamaica</th>
<th>Suriname</th>
<th>Trinidad & Tobago</th>
<th>LAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Internet use (5 of pop)</td>
<td>72.0</td>
<td>73.0</td>
<td>45.9</td>
<td>35.0</td>
<td>37.1</td>
<td>37.4</td>
<td>63.8</td>
<td>43.9</td>
</tr>
<tr>
<td>Internet affordability (fixed broadband $ per month)</td>
<td>30</td>
<td>43</td>
<td>21</td>
<td>24</td>
<td>26</td>
<td>41</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>Science & technical journal articles</td>
<td>3</td>
<td>16</td>
<td>9</td>
<td>3</td>
<td>51</td>
<td>1</td>
<td>60</td>
<td>19,129</td>
</tr>
<tr>
<td>Overall level of statistical capacity (scale 0-100)</td>
<td>–</td>
<td>–</td>
<td>78.9</td>
<td>58.9</td>
<td>78.9</td>
<td>63.6</td>
<td>62.2</td>
<td>76.5</td>
</tr>
</tbody>
</table>

Three countries (Guyana, Jamaica and Suriname) are below the LAC average in internet use. In internet affordability, only Trinidad & Tobago is lower (significantly) compared to the others in the group, and to the LAC average.

The WDI scientific and technical journal indicator does not include social science publications. However, scientific research is nonetheless a potential contributor to national policy and is indicative of a country’s research environment. The significantly higher outputs from Jamaica and Trinidad & Tobago (and to a lesser degree Barbados) can likely be attributed to the presence of the University of the West Indies (UWI), which is the largest university in the country group, and has campuses in all three countries.

Statistical capacity is a highly relevant indicator in respect of a country’s research capacity because it is such a fundamental enabler of many types of research. Statistical capacity has recently come under sharp focus in relation to the need for data associated with the Post 2015 Global Development Goals. Only the Dominican Republic and Jamaica are above the LAC average in overall level of statistical capacity.

Table 7 below focuses specifically on social science research, drawing on the Scimago Journal & Country Rank portal that includes the journals and country scientific indicators developed from the information in the Scopus database. Table 4 includes all categories of social science research in Scimago ranking portal (although Scimago does not include economics under social sciences).

9 Scientific and technical journal articles refer to the number of scientific and engineering articles published in the following fields: physics, biology, chemistry, mathematics, clinical medicine, biomedical research, engineering and technology, and earth and space sciences.
Trinidad & Tobago, Jamaica and Barbados stand out, roughly in the same proportions as in the WDI scientific and technical journal indicator, and likely for the same reasons noted above. Guyana’s ranking in 2013 should be looked at in the context of its ranking over the entire reporting period (1996-2014), in which its rank is higher.

Table 7 – All Social Science Publication Indicators

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahamas</td>
<td>27</td>
<td>6</td>
<td>26</td>
<td>47</td>
</tr>
<tr>
<td>Barbados</td>
<td>15</td>
<td>28</td>
<td>16</td>
<td>216</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>22</td>
<td>8</td>
<td>22</td>
<td>82</td>
</tr>
<tr>
<td>Guyana</td>
<td>29</td>
<td>5</td>
<td>21</td>
<td>90</td>
</tr>
<tr>
<td>Jamaica</td>
<td>12</td>
<td>52</td>
<td>11</td>
<td>541</td>
</tr>
<tr>
<td>Suriname</td>
<td>40</td>
<td>1</td>
<td>41</td>
<td>10</td>
</tr>
<tr>
<td>Trinidad & Tobago</td>
<td>13</td>
<td>52</td>
<td>10</td>
<td>550</td>
</tr>
</tbody>
</table>

Table 8 looks more specifically at three areas of research publication of interest to this project, from the same source. In respect of economics, the pronounced ranking of Jamaica, Barbados and Trinidad & Tobago remains visible, except in health research, where the Dominican Republic’s ranking moves above Barbados’. Guyana’s rankings in economics and education are broadly consistent with the more comprehensive ranking in Table 4, although its ranking in health publication is lower.

Table 8 – Rankings in Selected “Social Sciences” Publication (1996-2014)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Country Ranking</td>
<td>Published Documents</td>
<td>Country Ranking</td>
</tr>
<tr>
<td>Bahamas</td>
<td>36</td>
<td>2</td>
<td>29</td>
</tr>
<tr>
<td>Barbados</td>
<td>11</td>
<td>77</td>
<td>23</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>18</td>
<td>23</td>
<td>19</td>
</tr>
</tbody>
</table>

10 http://www.scimagojr.com/countryrank.php?area=3300&category=0®ion=Latin+America&year=2013&order=it&min=0&min_type=it

http://www.scimagojr.com/countryrank.php?area=3300&category=0®ion=Latin+America&year=all&order=it&min=0&min_type=it
The sub selection of countries in South America includes Bolivia, Ecuador and Paraguay. These three countries share various characteristics. Excluding Guyana and Suriname, these three countries are the smallest. Only Uruguay is smaller in size and population. The selected countries also have generally poorer development indicators than the rest of the region, and have multicultural populations.

Table 9 summarizes some of the key indicators on population, public spending on the social sectors and some key outcomes. All the countries are under the 15% of GDP in social expenditure benchmark for high spenders in the region. In addition, as spending per capita, these countries are among the lowest. In the region by 2013, social spending reached an average of USD 1155 per person while Bolivia does not reach USD 200, and Ecuador and Paraguay are still under USD 500 per person. This limits the capacity of the state to carry out policies for improvement in social outcomes.

Table 9 - Summary of Country Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Bolivia</th>
<th>Ecuador</th>
<th>Paraguay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>11 million</td>
<td>16 million</td>
<td>7 million</td>
</tr>
<tr>
<td>Poverty Rate (Gini Coefficient)</td>
<td>36.3%</td>
<td>33.6%</td>
<td>40.7%</td>
</tr>
<tr>
<td>Education Spending % of GDP</td>
<td>6.4%</td>
<td>4.4%</td>
<td>5%</td>
</tr>
<tr>
<td>Health Spending as % of GDP</td>
<td>6.1%</td>
<td>7.5%</td>
<td>9%</td>
</tr>
<tr>
<td>Elementary School Enrolment</td>
<td>81.6%</td>
<td>95%</td>
<td>81.9%</td>
</tr>
<tr>
<td>Secondary School Enrolment</td>
<td>71.6%</td>
<td>83.5%</td>
<td>62.6%</td>
</tr>
<tr>
<td>Infant Mortality (per 1000 children born alive)</td>
<td>30.6</td>
<td>18.4</td>
<td>17.5</td>
</tr>
</tbody>
</table>

The sub-selection of countries, like the rest of the region, show a long term trend for pro-cyclical spending on the social sectors. The countries have been able to increase spending during years of high commodity prices, but now are facing a slowdown in social spending. While many countries were able to put forward counter-cyclical policies in the crisis of 2009, the scenario for 2015 and onward is not as
favourable as the changes seem more long term than in the previous period.

In this context, the countries in the region face the specific challenge of turning their social investments into highly efficient and effective programs. It is important to note that the slowdown of the economies will not only affect the general fiscal space for social spending in the region, but will also affect the income of the poorest households. Indirectly this will also affect social outcomes by forcing children and the youth into the labour market for subsistence wages, or lowering out-of-pocket spending on health and nutrition.

To explore how policy research activities can support countries in facing these challenges, the diagnosis focuses on exploring the production of research, its demand, and the main research priorities for each country.

Major Differences/Similarities Across the South America Country Group

Latin America lags behind other regions in relation to the amount of researchers, the budgets allocated for research and in publications in international journals.

The sub-selection of countries has a low proportion of researchers in relation to its economically active population (Table 10). They all have less than 1 researcher per 1000 workers, with Paraguay having the least (as of 2012) followed by Bolivia (as of 2010) and then by Ecuador (as of 2011). These three countries the indicators are significant lower than other countries with better established research systems such as Argentina (3.02) or Brazil (1.48).

Table 10 - Full time researchers per 1000 workers

<table>
<thead>
<tr>
<th>Researchers per 1000 of EAP (EJC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolivia</td>
</tr>
<tr>
<td>Ecuador</td>
</tr>
<tr>
<td>Paraguay</td>
</tr>
<tr>
<td>Argentina</td>
</tr>
<tr>
<td>Brazil</td>
</tr>
</tbody>
</table>

In terms of the level of education attained by researchers, the majority have only a bachelor degree, followed by roughly a third with a master’s degree. Between 11% and 14% have a doctorate. This is substantially lower than other countries, like Chile where 46% of researchers hold a doctorate. Figures 2 and 3 (below) contrast Bolivia and Paraguay in researchers’ academic status.
In terms of investment in all activities of science and technology, the three countries are also below the regional average of 0.74% of GDP: Ecuador invests 0.4%, Paraguay invests 0.35%, and Bolivia invests 0.2%. It is important to note that the researchers in the three countries that participated in the interviews commented that public funding available for research is mostly focused in the STEM fields, and not the social sciences.

From this low capacity emerges a significantly low production of research published in journals recognized in international indexes such as the Science Citation Index (SCI), illustrated in Figure 4 below. Production is much lower than other countries, and the productivity of researchers is also low.
This general overview shows that the three countries face a challenge of low investment and capacity for research. Although, as will be discussed in following sections, some specific researchers and research centres have emerged, the knowledge systems of these countries is for the most part weak.

Country Group 3 – Central American (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama)

Located at the middle of the continent, Central America is a vast territory, covering a surface of more than 522,000 square kilometres, with an approximated population of 46 million people (2015). Including seven countries, this geographical area is the natural bridge between South America, North America and the Caribbean.

The socioeconomic conditions of the region could not be ignored, due to its particular and common historical and cultural heritage. The countries in the isthmus share the same language (Spanish is the most used language, being official in six of the seven countries, with the only exception of Belize), and are considered part of the middle-income group of countries (more than US$ 8,500 per capita – PPP, current prices).

Political relations are friendly and open among the countries, all with regular democratic elections and presidential regimes. Even though each country has its own foreign policy for economic and political relationships, there exists examples of integration, such as the Central American Free Trade Agreement (CAFTA) with United States, and the Association Agreement with the European Union.

Considering these countries as a homogeneous group tends to be very common, with some exceptions when Belize is classified as part of the Commonwealth, or is included (geographically incorrectly) as part of
the Caribbean. However, it is not complicated to obtain information about regional shared interests related with development issues.

Finally, there still exists significant challenges in order to fight against poverty conditions in the countries, as has been reflected in the poor performance indicators for the MDGs. Education and health, as the main budget lines for the development plans in the region, have been and continue to be considered priorities by all governments across the country group. However, problems such as continuity of the programs, evaluation of incidence, estimations of costs and benefits among alternatives, and the participation and feedback from the citizens will continue to be a challenges in the coming years.

Major Differences/Similarities Across the Central America Country Group

Based on the general perceptions of the region, some similarities are not unexpected, such as a lower rate of women’s participation in doing research (according to UNESCO, scholar years for women are lower than men in Central America), emphasis on doing research for solving poverty conditions, and the usage of international references (e.g. IDB and World Bank databases) to conduct comparative analysis. Also, it was interesting to confirm the paradigm that the majority of people that do research are economists and political scientists, with roughly five to eight years of experience, including the period of their master’s degree.

Nonetheless, some similarities are worth mentioning because they are not so evident. Even though in the last ten years the research areas mainly focused on poverty and development economics (safety nets programs, direct subsidies and rural schemes of production), respondents identified a growing interest on issues like school achievement, health and nutrition, employment and quality of public spending. Gender issues, environment, agriculture and governance seem to be topics that are beginning to be included in the agenda of research institutions at the region.

In the same line of ideas, as part of what is considered “research capacity”, the respondents have increased their participation in meetings at regional and national level, what has allowed them to be part of collaborative global and regional networks.

Finally, answers from the interviewees give the impression that there exist a tendency in using more sophisticated methods to develop economic analysis in the region, such as multivariable regressions, case studies, different scenario analysis, multi-annual budgetary prospections and cost-effectiveness comparisons.

More than the similarities, a lot of differences were acknowledged. The most significant was the identification of three groups of countries: Belize, the “north square” of Central America (Guatemala, El Salvador, Honduras and Nicaragua), and Costa Rica-Panama. This difference relies on different circumstances, but one of them is based on the way
budget priorities are defined by governments and the portion of the budget assigned for national development commitments.

Using as reference only the most recent available data for education and health budgets, Table 11 illustrates this point (source: World Bank database for development indicators 2014):

Table 11 – Comparative Levels of Public Expenditure (Central America Country Group)

<table>
<thead>
<tr>
<th></th>
<th>BEL</th>
<th>GUA</th>
<th>SAL</th>
<th>HON</th>
<th>NIC</th>
<th>CR</th>
<th>PAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education Expenditure (Public, % of GDP)</td>
<td>6.62%</td>
<td>2.85%</td>
<td>3.42%</td>
<td>5.86%</td>
<td>4.39%</td>
<td>6.07%</td>
<td>3.29%</td>
</tr>
<tr>
<td>Education Expenditure (% of Gov. Expenditure)</td>
<td>23.05%</td>
<td>20.64%</td>
<td>15.87%</td>
<td>19.23%</td>
<td>22.75%</td>
<td>21.02%</td>
<td>13.02%</td>
</tr>
<tr>
<td>Education Expenditure per capita (US$, PPA current prices)</td>
<td>$561.91</td>
<td>$214.15</td>
<td>$272.73</td>
<td>$258.74</td>
<td>$210.67</td>
<td>$986.97</td>
<td>$677.90</td>
</tr>
<tr>
<td>Health Expenditure (Public, % of GDP)</td>
<td>3.39%</td>
<td>2.42%</td>
<td>4.63%</td>
<td>4.28%</td>
<td>4.49%</td>
<td>7.40%</td>
<td>4.93%</td>
</tr>
<tr>
<td>Health Expenditure (% of Gov. Expenditure)</td>
<td>15.07%</td>
<td>18.63%</td>
<td>22.52%</td>
<td>18.23%</td>
<td>29.27%</td>
<td>27.35%</td>
<td>21.28%</td>
</tr>
<tr>
<td>Health Expenditure per capita (US$, PPA current prices)</td>
<td>$287.69</td>
<td>$181.78</td>
<td>$369.67</td>
<td>$189.17</td>
<td>$215.16</td>
<td>$1,063.34</td>
<td>$1,014.98</td>
</tr>
</tbody>
</table>

According to the above, Belize, Guatemala and Honduras prioritize the education sector, both in the assignment of funds as share of the budget and as share of the GDP. In the other side, El Salvador, Nicaragua, Costa Rica and Panama prioritize the health sector. Leaving aside the relative comparisons, in absolute terms, the countries present great differences in terms of per capita expenditure for both the education and health sectors.

Going beyond the budgetary data, other differences are worth mentioning. Researchers from different countries confirm that incidence and usage from policymakers varies depending on the propensity of the government officials to collaborate with research institutions. Think tanks from Guatemala, El Salvador and Costa Rica have a closer relation with political parties and governmental authorities. In the other side, think tanks from Honduras, Nicaragua and Panama face significant limitations in research interest from policymakers. This situation is evidenced through the very low rate of citations of research documents by politicians and policymakers, especially when they publicly present their governmental plans and strategies, or when they implement general guidelines for socioeconomic policies.

Evidence is not conclusive, however, and is only based on responses from the interviewees. Nonetheless, international references could be
obtained through the information provided by the Science Citation Index for the period 1996 to 2014 (Table 12 below).

Table 12 – Comparative Social Sciences Publications (Central America Country Group)

<table>
<thead>
<tr>
<th>Country</th>
<th>Rank</th>
<th>Documents</th>
<th>Citable Docs</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belize</td>
<td>181</td>
<td>289</td>
<td>266</td>
<td>3,491</td>
</tr>
<tr>
<td>Guatemala</td>
<td>128</td>
<td>1,998</td>
<td>1,836</td>
<td>23,799</td>
</tr>
<tr>
<td>El Salvador</td>
<td>150</td>
<td>987</td>
<td>918</td>
<td>8,126</td>
</tr>
<tr>
<td>Honduras</td>
<td>153</td>
<td>890</td>
<td>851</td>
<td>10,954</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>146</td>
<td>1,184</td>
<td>1,124</td>
<td>15,263</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>92</td>
<td>8,224</td>
<td>7,812</td>
<td>126,316</td>
</tr>
<tr>
<td>Panamá</td>
<td>103</td>
<td>4,573</td>
<td>4,310</td>
<td>112,967</td>
</tr>
</tbody>
</table>

The above information refers to scientific documents and citations derived from documents published during the period from 1996 to 2014. Even though the analysis aims to describe the influence that researchers and research institutions from the region has in the policymaking of their respective governments, these numbers give a rough idea of the very low positioning of the seven countries in comparison with the rest of the world. This particular condition could be described as a very low capacity to produce scientific knowledge that gets published in journals recognized at international level, representing a significant challenge to overcome in order to be recognized by policy actors when they need to justify projects or, more important, to define strategic lines to solve specific development problems faced by each country.

Finally, one more difference is in the capacities of the researchers. Only Guatemala and El Salvador evidenced multidisciplinary teams at research institutions, with the involvement of lawyers, economists, political scientists, anthropologists, sociologists and engineers for some cases. Researchers from Panama and Costa Rica commented on the relevance of this topic, but confirmed a more specialized perspective, with teams conformed to attend one problem at a time. Researchers from Honduras, Nicaragua and Belize didn’t bring any information about this topic.

Maybe it is important to add a qualification to any conclusions based on views from regional experts that access to higher levels of education present different levels of dispersion among countries, has a direct effect on the quality of the research products. They mention Guatemala, El Salvador and Costa Rica as the regional reference for specialization in research, with considerable production of formal and scientific research
fulfilling international quality standards and requirements. Honduras, Nicaragua and Panama are not considered as formal references for serious researches, especially for topics related with budgetary analysis (due to lack of information, there was no reference for the case of Belize).

This gap has been covered by research institutions out of the influence of universities, with the only exemption of Guatemala (Universidad de San Carlos) and Costa Rica (INCAE Business School). Public and private universities in El Salvador have been working on the same line, but think tanks are mostly the main source of research in the isthmus, with a certain degree of recognition by some international organizations, such as the University of Pennsylvania with its "Global Go to Think Tank Index Report".

Even though all the countries in the region are subject of evaluation from different organizations at international level (e.g. The Economist, World Economic Forum, IDB, and United Nations, among others), there exist serious information gaps in terms of updating and disaggregation of information.

A common issue for all seven countries is that governmental data (i.e. official data), is shared with international organizations before it is published for public access. This situation is attributed to organizational commitments related with direct development aid programs and international evaluations that are regularly published – for example, the Human Development Index, the Global Competitiveness Index and its different reports, MDG reports, Doing Business Index.

More specifically concerning budgetary data, information is available, but for more of the cases, it should be required under governmental procedures related with different versions of open data policies and laws. Researchers continuously face the challenge of having timely access to disaggregated data in a user-friendly format (institutions do share information but on pdf format). This situation has led researchers to do only partial analysis or to avoid this kind of studies.

Finally, derived from the interviews for this study, regional experts have identified a disconnect between supply and demand of information. More of the information that is produced by research institutions attends particular requirements of projects or donors, instead of reflecting an honest interest to collaborate with governmental institutions. In the same way, policymakers do not put attention to the studies and analysis made by independent researchers or research institutions because they are usually thinking on solving conjuncture issues instead of structural problems (the ones that are subject of research from serious organizations).

In a certain way, media has covered this gap with specific press articles, TV and radio talk-shows and the usage of social media networks. Its intention has been to give exposure to innovative ways to analyse
country and region problems, presenting ideas on a simplified way that
could be understood by massive audiences, aiming a temporal
enhancement in the political environment.

Emerging Findings: Production of Research

This and the following sections summarise the emerging findings from
all three country reports, based on survey responses and interviews.

Broadly speaking, research in all countries in the group is produced by:

- Researchers in universities including teaching staff or graduate
 students working as on individual research grants, thesis research
 or consulting contracts;
- Researchers working as part of a university unit, like a institute or
 affiliated think tank;
- Researchers working in government bodies; or,
- Researchers working in a non-government research network or
 organisations such as think tanks or civil society organisations
 (CSOs).

The majority of researcher respondents identified their discipline as
either economics or education (45% and 17% respectively), with the
remainder divided among political science, sociology, health and
anthropology. Most (61%) received their formal graduate research
training in a "Northern" country; 34% in their own country; and 10% in
another country in their region. There are some differences among the
various country groups.

For example, in the South American group, most researchers work in
the areas of economics (44%) and education (30%), with a smaller
proportion in other specific areas. The majority are affiliated with a
university (50%), while 32% are affiliated with a think tank or other
form of research centre. The most common areas of research are
poverty, education, economic development, evaluations, health and
public expenditure.

By contrast in the Caribbean group, very few researchers are connected
to think tanks, with the exception of the Dominican Republic, which
seems to have more in common with Latin America in terms of the
presence of "think tanks" and their connections with universities.

Across the country groups, researchers’ academic qualifications are
close to evenly split between those with doctorates and those with
master’s degrees (29% and 27% respectively). 15% were doctoral
candidates, and 19% master’s candidates. In age cohort, 46% are aged
31-40; 27% aged 20-30; 19% aged 41-50, and the remainder over 50
years of age.

One of the findings highlighted in the Central America group is that
more than 70% of the researcher respondents are either master’s
candidates or have only a master’s degree. This highlights the need
to given attention to both academic and non-degree researchers’ training.
Moreover, almost 50% of the interviewees in the Central America group have less than 10 years of experience and are in the 30-40 age cohort.

Across all researcher respondents, aside from one "Professor Emeritus", 24% indicated their institutional affiliation as "university teaching staff"; 12% each as "doctoral" or "masters" candidates (there were no master’s candidates among the Caribbean respondents), and 34% from a "think tank or research organisation". The "think tank" based researcher cohort varies significantly across the country groups, ranging from 100% of researcher respondents in the Central American group, to 31% in the South American group, and 12% in the Caribbean country group, where think tanks are the least dominant institutional affiliation identified. The numbers for doctoral and master’s candidates are 12% respectively (though as noted earlier none of the latter are in the Caribbean group).

Around 41% of researcher respondents indicated that they have been involved in 6-10 research projects in the past ten years, with the majority (46%) involved in between one and five research projects in the same period, and 11% in 11 or more research projects. The majority (76%) indicated that they are currently involved in research.

Figure 5 captures some of the on-line channels used by researchers to communicate about their research. Noteworthy is the relatively low number of people reporting use of their own website or blog (almost none of the Caribbean group researchers compared with around 12.5% of researchers in the other two country groups). However, in those groups, the level of Facebook use reported is almost half that of the Caribbean group; and only a third reported use of researchgate.net or other research e-hubs in contrast to the Caribbean group.

Figure 5 – Use of Web-based Channels for Communicating About Research

It is not clear to what extent Facebook use reported is expressly for research communication, or simply a social network platform that is only incidentally used to reach research colleagues or policy actors.
In regard to what has occupied researchers’ attention over the past 10 years, it clusters as follows, bearing in mind that many identified more than one area of research activity. Within each cluster, the level of attention to each subject area was more or less the same.

- Poverty, education, and economic development were the most frequently identified subjects (by over 40%, with poverty research by over 50%);
- Health, growth and inequality, gender studies were the second most identified subjects (each by slightly more than 30%);
- Programme evaluation, and impact evaluation, as conceptual methodological approaches, were the similarly identified (each by slightly more than 30%);
- The third most identified cluster of subjects included employment/livelihoods, public expenditure and social protection, (each by over 20%);
- Environment, finance and resource mobilization, microfinance, governance, ICT, agriculture, food security, natural resources, trade and regional integration, and climate change were reported by between 5% and 15%).

Among the “other” research subjects reported were: cultural industries (much more visible in the Caribbean); small business and entrepreneurship; population and aging; early childhood; and, transparency/open data systems. Neither urbanisation nor security were identified as areas of research attention over the past 10 years. *These figures refer only to current or past research, and not future research interests or perceived national research priorities.*

Figure 6 below, provides a look at where research funding comes from. Most researchers cited more than a single funding source. Underlying the aggregate figures for all country groups are some important variations. For example, in the Caribbean group, donor research grants and consultancy funding are the most highly ranked sources by importance (over or close to 60%). In the Central American group, neither government core funding, nor government research grants were identified at all as sources of research financing.
These figures are broadly consistent with the experience of the Think Tank Initiative (TTI), which notes that with the “limited domestic sources of support at present, international donors are a key source of funding for Southern think tanks. Yet that funding is also limited, and is usually intended for specific projects. As a result, most of these think tanks are restricted to carrying out commissioned research, rather than setting an agenda that responds to local needs”.\(^\text{11}\)

To illustrate some of the challenges associated with research funding, the South American country study highlighted the following:

- An Ecuadorian researcher based at a private university noted that it is difficult for them to receive funding from international organizations because of internal bureaucracy; or from the government due to a perception of limitation of freedom of thought.
- A Bolivian researcher based at a new private university research centre suggested that they are now opening a new consultancy line to finance their research. That way they receive funding for their research, supporting the government with research and data related tasks. Consultancies paid by international organizations but carried out for the government are one of the most common mechanisms. Other centres finance their main activities through international grants. “The centre does not have core funding beyond my salary and a secretary. But with the funds from grants and consultancies we have the chance to hire recent graduates and PhD students. But these short term funding opportunities do not allow us to maintain staff in the long term”.
- A Paraguayan researcher based at a new think tank mentioned that funding is primarily through consultancies and international funding with little availability from government.

Figure 7 provides an indication of the research concepts and methods applied by respondents’ in their research. Under the “other” category, researchers identified “trade law”, “quantitative large scale surveys”, “qualitative research”, and “SABE survey data collected by PAHO”.\(^\text{12}\) Small-N case studies is the pre-dominant methodology in use in all country groups, closely tied with econometric measurement, and followed by large-N case studies.

\(^{11}\) TTI supports 11 think tanks in Latin America, 7 of which are in countries covered by this project, although none are from the Caribbean country group. http://www.thinktankinitiative.org/program/approach

\(^{12}\) Survey on Health, Well-Being, and Aging in Latin America and the Caribbean (Project SABE) was conducted during 1999 and 2000 to examine health conditions and functional limitations of persons aged 60 and older in the countries of Argentina, Barbados, Brazil, Chile, Cuba, Mexico, and Uruguay, with special focus on persons over 80 years of age. Pan-American Health Organisation (PAHO).
Of particular relevance to the project are views on research capacity building including both the types of capacity building activities researchers have already been involved in, as well as types of future capacity building perceived as useful.

The Latin America findings are broadly representative of the experience in all country groups. It noted that only 33% of researchers received training on communication and dissemination, an activity that is considered by many as one of the most valuable areas of research capacity building. This coincides with the findings regarding the communication strategies that researchers use. Most rely on their institutional websites (43%), or other academic sites (32%).

In the Caribbean group, very few researchers have been able to participate in non-degree research capacity related training (i.e. in research communications, concepts and methodological training, or more generic skills like survey design). One government-based researcher noted that the only such training opportunities they were aware of were associated with participation in grant schemes like PEP or other research networks, where some element of capacity building is included in the process.

Figure 8 below, illustrates the former. Participation in “non-degree training in research methods and tools”, and “formal interaction with external resource persons provided by research funders or networks” is considerably lower in the Caribbean group (28% for each), compared to
46% for each in the other two country groups. Aside from participation in research or policy conferences/annual meetings (83%), the most frequent experience has been with global or regional research networks.

Figure 8 – Personal Involvement in Types of Research Capacity Building

Comparing researchers past participation with rating of “activities according to how valuable they are or could be to you as a researcher”, reveals that:

- The capacity building activities most cited as being very valuable are “non-degree training in research methods and tools” and “formal higher education in research methods and tools” (66% and 62% respectively).
- This was followed by “participation in research or policy conferences/annual meetings” and “participation in global or regional research networks” (55% each). “Regional or national research meetings” was seen by less than 50% as very valuable, although for the Caribbean group this figure was closer to 75%.
- 42% indicated that “placement or temporary assignment to a government agency” would be of little or no value. By contrast, “study visits to a research organization” was seen as being very...
valuable, or of some value by 68% (even though only 12% reported having actually participated in this kind of activity before).

- 47% indicated that “technical support in research publication (papers, articles, books)” would be very valuable, although 17% saw this as having only possible value.
- By contrast, only 37% saw “technical support in research communication (policy briefs, media training, presentation skills, etc.)” as very valuable. Again, variance among country group is significant. For example, only 12% of researchers in the Caribbean group ranked “publication” support as very valuable, although 37% identified support for “research communication” as very valuable.

Researcher respondents identified an interesting range of additional training or professional development they would like to have access to, including, but not limited to: cost-benefit analysis; survey design; CGE models; geocoding; ethnographic methods; labour economics; funding availability and access (presumably fund raising strategies); national level data collection; and, multi and mixed methods (there is no way to determine if these mean the same thing to people, as the terms are often used interchangeably).

In terms of the perceived value of training/professional development in research concepts and methods, researchers identified interest in literally every method listed in the survey. However, a few stand out either because they were seen as “very valuable” or as “not so valuable”:

- “Impact evaluation”, “survey design and execution” and “data visualisation” had the highest value ratings, with 73%, 61% and 58% respectively seeing these as very valuable. This was followed by “econometric measurement/simulations” with 56%;
- “Macro modelling” and “meta analysis” were seen as not so valuable, or not valuable at all, by 34% and 20% respectively;
- 49% saw “public expenditure analysis” as very valuable, although 17% described it as not so valuable or not valuable at all.

“Political economy analysis” was identified by one respondent under the “other” category. It would have been interesting to see how respondents would have rated it had it been included in the list.

Emerging Findings – Research Organisations

All three mapping studies engaged representatives of research organisations as informants, either in interviews and/or as survey respondents. The objective was to understand whether those working as administrators or managers had particular views on the research environment that might be distinct from the perspective of individual researchers or from users of research. Respondents identified themselves by institutional affiliation as illustrated in Figure 9 below.
Bolivian respondents noted that there is significant collaboration between researchers based in think tanks and universities. Researchers based in both types of institutions regarded each other highly. For example, the Universidad Privada de Santa Cruz de la Sierra and INESAD co-hosted the LACEA (Latin American and Caribbean Economic Association) Conference this year.

A number of individuals interviewed in the Caribbean group drew attention to the research activities of private sector associations, and the direct and indirect value added for public policy. The example most frequently cited was a 2014 study on road safety undertaken by an insurance association, that offered useful insights on crime, community safety and school access, in addition to its findings on road safety.

The Latin America study highlighted the role of research by civil society organizations in contrast to universities’, which are seen as having limited capacity to carry out research. It noted that professors devote most of their time to teaching, and to complement their salaries most also carry out other jobs. In this context, the role of research to inform policy has been absorbed by civil society organization. These organizations, however, face the challenge of unstable and limited funding, and short term objectives that do not necessarily go in line with a long term research agenda. Although some organizations are think tanks or other types of knowledge centres, these are just a small part of the CSOs as a whole.

Among the research organisation respondents, the two largest groups by organisational role were executive directors and research directors (38% and 31% respectively). The remainder were evenly divided (roughly 8% each) among research management or staff, communications management or staff, professors, and university
research staff. The organisations themselves included an impressive range of disciplinary coverage (Figure 10 below).

Figure 10 – Disciplinary Coverage of Research Organisations

Not surprisingly, staff of research organisations are engaged in a number of activities in addition to their research work, including a variety of academic roles, participation in government committees or advisory boards.

Particularly noteworthy in Figure 11, is the large number (almost 78%) who are also engaged in consultancy assignments.

Figure 11 – Additional Activities of Research Organisation Staff
Roughly half the respondents indicated that their organisation provided financial support to staff for attendance at “external non-degree training courses”. Almost 70% indicated that their organisation provides leave for such activities, and 23% reported the provision of financial support or paid leave for post graduate training.

In terms of organisations’ current funding, ranked by descending importance are: government research grants; donor core funding; government core funding; and donor research grants. 55% ranked consultancy as the third most significant source of funding. Private endowments and membership fees were the lowest ranked sources, to the point of invisibility in some countries.

The variety of areas of research undertaken by organisations over the past ten years clusters as follows:

- Education research was the most frequently cited activity (by over 60%), followed by poverty, health, environment, economic development, growth and inequality, public expenditure, and gender studies (between 50% and 60%);
- Employment/livelihoods, food security, climate change, natural resources, governance, impact evaluation and microfinance were next with between 30% and 50%;
- In descending order, agriculture, finance and resource mobilisation, programme evaluation, ICT, social protection, trade and regional integration and security were identified by between 10% and 30%.

Most organisations (33%) indicated that they have undertaken between one and three research projects in the past five years, and over 16% indicated they had undertaken more than 16 research projects in the same period.

Methodologically, organisational coverage is fairly diverse as noted in Figure 12. (The “other” in Figure 12 refers to “conflict transformation”).

Figure 12 – Research Concepts/Methods Applied by Research Organisation Staff
Research organisations (or rather the administrators/managers of organisations) have views on the value of research capacity building that differ somewhat from those of individual researchers.

- The three activities ranked the highest as very valuable are “technical support in research communication (policy briefs, media training, presentation skills, etc.” (75%), followed by “participation in global or regional research networks” and ‘training and/or technical support/guidance in research communication and policy engagement” (each by almost 70%).
- This was followed by 58% respectively for “non-degree training in research methods and tools” and “participation in research or policy conferences/annual meetings”.

In regard to organisational capacity building, 59% ranked “technical advice in fundraising” as either first or second in value. Activities ranked lowest in value were “networking opportunities with similar organizations in other countries” and “use of online tools and resources”.

The apparent “nonexistence” of journals at the national level was noted in relation to capacity needs. In Bolivia, Ecuador and Paraguay, there are very few peer reviewed academic journals that can be the basis to qualify and organize knowledge within the countries. Many researchers publish abroad, or do not publish at all, resulting in research as grey literature that later cannot easily be accessed and used. This causes researchers to repeat instead of expand on others’ research.

Figure 13 below illustrates the communications channels used by research organisations. Unsurprisingly, web-site use is reported at a much higher level than by individual researchers. However, although many research organisations do have websites, relatively few have downloadable or searchable research indexes.

Figure 13 – Research Communications Channels Used by Research Organisations

Lastly, research organisation respondents suggested a number of additional areas of capacity building useful in the context of their organisations’ future research interests, such as:
- Multidimensional Poverty and Child poverty;
- Research on factors associated with academic achievement at all educational levels, research on teacher training, research on the contribution of the university to national development, and the demand and supply of educational offerings of universities and technical schools;
- Participation and development;
- Placement or temporary assignment to a development agency;
- Development, environment and climate change;
- Health and social protection;
- Strengthening capacity for research grant writing;
- Gender and organized crime prevention, public safety, culture and development;
- Impact assessments, economics of climate change;
- Management of scientific and technological information for public use;
- Professional training in education, using tools that allow the analysis of the LAMP databases, TERCE, SERCE; and,
- The exchange of experiences among governmental organizations in the region on the promotion of science and technology.

Some general observations on think tanks and universities in the country groups is appropriate.

The Central America study noted that “serious” think tanks, with researchers with more than 10 years of experience, were located only in Guatemala and El Salvador, and are able cover a variety of fields of study with professional soundness and accuracy. In the rest of the countries, the role of think tanks and universities is undeveloped, with very low production of studies and analysis aimed at policymakers’ priorities and solving development problems, with the exception of Costa Rica.

It also noted that think tanks are taking a more relevant role in recent years. However, in the seven Central American countries independent research institutions are configured as think tanks, NGO’s or private research foundations. Although they may have similar objectives and administrative structures, many are founded by private donors, with a substantial share of funds from projects financed by international organizations. As noted later in this report, many of the “think tanks” in the 17 countries are not necessarily engaged in, nor technically capable of, scientifically rigorous research, and are fundamentally advocacy organisations.

As noted in the Central America study, the region differs with the common practice in United States and Europe, where political parties have affiliated think tanks to feed public policy proposals. In Central America, the political parties do not have close links with research institutions. Instead, think tanks and universities try to influence political parties once they are governing, or when national problems are raised in public dialogues or are subject of media scrutiny. This
situation could be one of the reasons policy actors rarely appear to take into account the proposals of the research institutions. Additionally, research institutions tend to be out of phase with the policymakers’ interests, in part due to the outdated information, and in part due to the different interests expressed by the donors or the financiers of specific projects.

It is worth noting the case of Guatemala and El Salvador, where researchers and representatives from research institutions have expressed a genuine interest in working closely with government agencies, signing cooperation agreements for specific analysis used to identify financing opportunities with international donors. Successful examples of such collaboration are the proposals for the administration of the funds from the Millennium Challenge Account (i.e. Fomilenio in El Salvador and PRONACOM in Guatemala), and most recently, the Plan of the Alliance for Prosperity in the Northern Triangle. Both programs financed by the U.S. Department of State, with the requirement of building local capacities for research and policymaking.

Excluding university based institutes, the Caribbean appears to be somewhat of a backwater in terms of the presence of think tanks. There are quite a few organisations that refer to themselves as “think tanks”, but for all intents and purposes are CSOs. These may, from time to time, use others’ research, but mostly engage in issue-specific advocacy or lobbying. The mapping excludes these organisations unless there is clearly an indication that doing research is a core function, guided by the loose definition used by TTI, that the organisation is “generating and analysing credible local data …[to] enhance public policy debates and promote more objective, evidence-based decision-making”.

The relative scarcity of think tanks is a key factor that distinguishes the Caribbean country group from the other two groups. It is extremely difficult to find evidence of think tank presence in the Caribbean country group. For example:

- The Think Tanks and Civil Societies Program (TTCSP) at the University of Pennsylvania conducts research on the role policy institutes play in governments and in civil societies around the world. It has developed an “interactive, global, comprehensive, multi-sectoral database and directory of think tanks”, claiming to consist of over 6500 think tanks in 179 countries around the world. The directory is difficult to access, and only appeared to contain data on a single think tank in the Dominican Republic. TTCSP’s 2013 Global Go To Think Tank report, indicated that LAC has 9.7% of the global population of 6,226 think tanks. Its LAC list indicates a number of think tanks (without naming them) present in the country group as follows: Bahamas 2; Barbados 9; Dominican Republic 28; Guyana 3; Jamaica 6; Suriname 2; and, Trinidad & Tobago 10. A search through various sources and by country, suggests nothing close to these numbers unless one possibly includes CSOs and university departments/institutes. Critics of the
TTCSP approach to ranking point out that organizations can essentially self-identify to be included in the listing. The “2014 Global Go To Think Tank Index Report” listing of the “top” think tanks in Central and South America (which excludes Mexico but includes the Caribbean), lists 50 think tanks of which 16 are from among the countries of this project, including one that apparently does no research.

http://gotothinktank.com

- The Harvard Kennedy School Library offers a “think tank” search facility. It identifies 48 LAC think tanks, of which 17 are from the countries of this study. Only one from the Caribbean country group is listed -- the The Nassau Institute, which describes itself as “an independent, a-political, non-profit institute that promotes economic growth in a free market economy with limited government”. Its website does not identify any research undertaken by the organisation.

http://guides.library.harvard.edu/hks/think_tank_search

- Twitter provides a directory of LAC think tanks that have Twitter accounts (it does so for other regions as well). The LAC list indicates around 80 think tanks, of which there are at least a dozen from the countries of study, although one from the Caribbean country group Fundación Global Democracia y Desarrollo (FUNGLODE) in the Dominican Republic. Many of the bodies listed are policy advocacy networks rather than research organisations, and a number are research networks not necessarily based in LAC.

https://twitter.com/onthinktanks/lists/thinktankslatinoamerica/members

- The Atlas Network, an “advocacy organisation promoting strengthen the worldwide freedom movement by cultivating a highly effective and expansive network” has a “global directory” of partners that includes 74 partners in LAC. The list appears to be a mix of think tanks and CSOs.

https://www.atlasnetwork.org/partners/global-directory/latin-america-and-caribbean

- A “Think Tank Map” developed by the International Center for Climate Governance (ICCG), includes a network of organisations whose research activities focus on the design of climate policy and governance. Its website indicates 310 think tanks, although only around 280 are included in its downloadable list. Of these 17 organisations are from LAC, and seven of these from the Central and South America country groups (none from the Caribbean although CAPRI and FUNGLODE did appear in an earlier list along with a number of university institutes from the Caribbean).

In respect of universities, UWI is ranked 45th in “innovative knowledge” in the 2014 higher education sector for Latin America. The Universidad de Costa Rica and Universidad San Francisco de Quito are the only other institutions from the project’s 17 countries to appear in the Scimago ranking, at 85 and 156 respectively. All three appear in the 2014 “technological impact” ranking (87, 97 and 96 respectively).13

Emerging Findings: Research Use by Policy Actors

Research use is a notoriously difficult thing to assess, as many studies on linking research and policy have found. Being able to draw a direct link between research “x” and policy decision “y” is extremely rare. Efforts by many organisations to document evidence of “research uptake” in terms of direct policy influence have never been particularly conclusive. GDN is currently examining alternatives to monitor the societal visibility of research, looking at evidence from print, radio and TV, blogs, webspace, policy literature (consultation papers, policy statements, speeches, sector strategy documents, etc).

However, it is comparatively easy to identify potential audiences of research in the countries group, which typically include: i) government bodies and officials (elected and public service); ii) CSOs and associations including labour organisations and private sector groups; iii) the media; and, iv) other researchers and officials associated with non-government research networks, regional or global think tanks, and development agencies.

Of the “policy actor” survey respondents (which does not include individuals interviewed), the majority (39%) were from a national government ministry (e.g. health, education, justice, social services); 32% were from a central government body (President/Prime Minister’s Office, Cabinet Office/Secretariat, Planning Agency, Finance Ministry, etc.); and the remainder (6% or less each) from CSO, media, local government and other national government (e.g. agency, board or commission). Figure 14 below captures how respondents described their role in their organisation.

Figure 14 – Policy Actors’ Roles in their Organisation

13 Scimago Institutions Rankings, Scimago Lab. Data source: Scopus
In respect of respondents actively seeking research, as indicated in Figure 15, 22% indicated that actively seek research very frequently, and 35% actively seek research frequently or occasionally.

Figure 15 – Level of Research Use

48% indicated that their organisation does not commission research (paid for by any source). Of the organisations that do commission research, 46% indicated that their organisation had commissioned 11 or more research projects in the past ten years; and 38% had commissioned eight to ten research projects in the same period. The remainder indicated that they commissioned between one and seven projects over this period. Those whose organisations commission research, the majority (71%) use both national and non-national researchers, though 28% indicated that they only use national researchers.

Policy actors who were aware of the source of funding for research they use, noted that research used was funded from a variety of sources, with donor commissioned research with most frequently cited source (72%), followed by research supported through a donor funded research grant scheme (48%). Self-financed research and research commissioned by a government body were the third most cited source (44% respectively). Government research grants appear to be the least cited source (16%).

Several perspectives were offered on the challenges of research use by policy actors (specifically in government). Although the points below paraphrase the Latin American group, virtually identical views were heard in the Caribbean and Central America interviews. In essence:

- Policy makers have difficulty reconciling the need for evidence supporting a strategic perspective with their day to day pressures. Policy makers note that they have a lot of requirements they need to fulfil and in that process lose the opportunity to seek or absorb research on strategic issues.

 “Internally we are trying to do interesting things. We have readings and debates about research. I send my staff readings and materials, but not all have the time or dedication to read them. For example, we discussed Piketty’s Book and began thinking about new tax reforms.
on inheritance. But there is not enough time to do all this is your 9 to 5 job.”

- Internal organization of knowledge in public entities is difficult. It has been identified that there is much disorganization about how public officials interact with researchers. This causes duplicity of consultancies being commissioned, and not the best use given to those that are commissioned.

- The need for prompt responses has lead public organizations to carry out their own research programs instead of collaborating with others.

 “In this Ministry we have a lot of requests for what the evidence says. But we usually do not have the time to commission this. We have to do this in-house, which also gives the Minister more confidence”; and, “Here we need to carry out consultancies because the research we need is not available out there. We need this information quickly and have no time for long research projects. We do it internally, or hire consultants. But usually these results do not become documents that are available to the public or even other institutions”.

- Fragmentation in the knowledge system. Policymakers identify that all stakeholders work in silos. Their focus is so specific and narrow that available research cannot respond to it and has limited impact.

 “Coordination between public institutions is another difficulty we face. When it comes to doing research that needs information from other public institutions it is almost impossible to get it. For example, you see very good research on maternal mortality, even with support from international organizations. But then, if you try to have broader data of mortality in general, this one is very unreliable”.

- Government officials have difficulty setting a meaningful research agenda. Several senior government officials in the Caribbean group noted that it is virtually impossible to have a sense of the range of recent, current and planned social science research at the national or regional level. The data is there, but not organised or accessible.

In regard to research subjects that occupied policy actors’ interest over the past ten years, it clusters as follows, bearing in mind that most identified more than one area of research. Within each cluster, the level of attention to each subject area was more or less the same unless otherwise noted.

- Health, education, programme evaluation and impact evaluation were the most identified subjects (each at roughly 50%).

- Poverty, growth and inequality, public expenditure, social protection, and gender, were the second most identified subjects (each between 30% and 40%).

- The third most identified cluster of subjects included environment, economic development, employment/livelihoods, ICT, food security, climate change and “other” (most between 20-30%). “Other” included security/justice, tourism, community policing, natural sciences, human rights, and economic modelling.
Finance and resource mobilisation, microfinance, governance, urbanisation, natural resources, trade and regional integration, and security, were the least identified subject areas of interest over the past 10 years (10% or less). This figure refers only to current or past research interest, not future research interests or perceived national research priorities.

When asked when they most recently used research or reviewed research findings, 44% indicated that they are currently using research; and 44% using research as recently as 2014.

Figure 16 provides a picture of how policy actors learn about or access research.

Figure 16 – How Policy Actors Learn About or Access Research

The “other” responses in Figure 16 include: research provided by colleagues in other parts of government; the IDB and other development organisations like, ODI, IDRC; web search; references from personal networks; university contacts; UN agencies and various environmental organisation sites - SDS and SDG blogs and websites.

Policy actors had interesting views on the technical quality of research from different sources.

- Almost 72% indicated a high, or reasonable level of confidence in research produced by “university based research groups” (i.e. a research institute or think tank that operates within a university);
- 56% indicated that research by “individual university researchers” was of reasonable quality (though only 8% described having a high level of confidence in it).
- 48% rated research by “national think tanks” as being of uncertain quality, compared to only 16% who rated research by “regional or international think tanks” the same way (8% indicated low confidence in quality in respect of national think tank research);
• The research sources that apparently elicit the most confidence are “regional or international think tanks or research organizations”, with 44% indicating a high level or confidence in quality, and 40% a reasonable level of confidence;
• For research done by “CSOs that do or commission research”, 48% indicated a reasonable level of confidence, but 40% reported an uncertain level of confidence and 12% a low level of confidence in quality;
• The only research producer that elicited a not confident at all response (4%) were “private sector organizations that do or commission research”. The majority (52%) indicated uncertain quality, or reasonable quality (36%) and none indicated a high level of confidence in research quality from private sector bodies;
• For “government bodies that do or commission research”, 60% expressed a reasonable level of confidence in quality, and 28% were uncertain.
• Research done by “donor agencies” was seen by 32% as high confidence in quality, and by 44% as reasonable, although 16% indicated uncertain confidence and 8% low confidence.

Policy actors were asked their views on “the value of capacity building activities that could enhance their use of research”. Several activities stand out:

• “Participation in regional or national meetings on research” was highest rated with 56% seeing this a very valuable.
• “Training and/or guidance in commissioning research” was the second highest (46%), followed by “non-degree training to understand the comparative features of different research methods”, and “participation in research or policy conferences/annual meetings” with 44% respectively seeing these as very valuable.
• Slightly lower in rating were “training in use of online tools and resources to access research”, and “use of external resource persons to provide technical guidance or quality assurance for research”, each seen respectively as very or somewhat valuable by 37% and 30% (although 39% described the latter as not valuable at all);
• “Staff visits or temporary assignment to a research organization” was seen as “not valuable at all” by 43% of respondents.

Several interesting comments were offered in regard to research use, including:

• The need for collaboration with planning agencies in other countries;
• Development of research governance/coordination strategies; and,
• Development of a national research register (to achieve greater transparency about what research goes on and the associated level of investment from all sources).
Virtually all respondents noted that funding was a constraint.

Emerging Findings: The General Research Environment

Before reviewing the various views expressed on research priorities, it is useful to look at how all respondents view such things as the drivers of research, the value of research to different audiences, and perceptions on the coverage of research in universities, and on capacity building.

Figure 17 illustrates who respondents see as the “drivers” of research in their respective country.

Figure 17 – Perceived Drivers of Research (All Respondents)

Clearly donors are seen definitely or frequently driving research by over 70% of respondents. It is interesting to note that researchers themselves are seen by roughly the same amount to be driving research (though a significantly lower % described this as “definitely”). Figures 18 and 19 below contrast how valued/important research is to policy actors outside government to actors in governments.

Figure 18 – Perceived Value of Research to policy actors outside government
It suggests that external users are seen as somewhat more likely to place a higher value on research than government users.

Roughly 47% describe the level of media (print, TV, radio, web) attention to research evidence receives in their country as “not much”, although 30% say there is “some” attention and 14% indicated “quite a lot”.

In respect of views about how the quality of research produced by national researchers compares with that of non-nationals, the majority of respondents (51%) describe it as “about the same”. However, almost a third (31%) describe research quality of national researchers as “worse” (though 15% view it as “better”).

Views on the barriers faced by researchers and research organizations indicate that there are multiple barriers present in all the countries in the study group:

- Availability of research funding was ranked by 85% as very significant barrier;
- Competition for funding from other national or international researchers was ranked by 40% as very significant barrier, and by 35% as a somewhat significant barrier;
- Access to national data was ranked by 54% as a very significant barrier, and by 30% as a somewhat significant barrier. By contrast 21% described access to international data as a very significant barrier.
- Lack of interest from policy actors in government was ranked as a significant barrier by 41%, in contrast to lack of interest from non-government policy actors (e.g. civil society, media, private sector, labour groups), which only 14% described as a very significant barrier.
- Communications skills of researchers (policy engagement, outreach), and technical skills of researchers (methods/tools/technologies) were ranked by 36% and 32% respectively as very significant barrier.
By contrast, legal restrictions on research activities, and internet connectivity, were seen as not that significant, or as not significant at all by 38%, and 28% respectively.

Somewhat more ambiguously, academic policies and publication opportunities were considered very or somewhat significant by 56% and 46% respectively, although 24% saw the former as not significant at all. In the Caribbean, this view was expressed in several interviews, and two factors noted as barriers to policy utility:

- Academic policies incentivise research choices and publication channels that favour academically oriented research (theoretical research as some referred to it) over policy oriented research (applied);
- The lengthy time frames involved in academic research and publication often means that findings which are relevant to policy are not made available in a timely manner, and many researchers do not seek communications channels appropriate to policy actors, or do so only after formal publication in journals has occurred.

Quite a range of views were expressed on the coverage of research concepts and methodologies in national universities. Figure 20 below indicates that fully half the respondents saw coverage of research methods and tools as minimal or poor, suggesting that there are substantial opportunities to enhance formal teaching or research skills.

Figure 20 – Perceptions on Coverage of Research Teaching in National Universities

In regard to the need for capacity building of research organizations in respondents’ countries, Figure 21 below suggests that there are several areas of acute need, specifically: policy engagement; communication and outreach; and, research methods and skills. This mirrors a view common among international organisations involved in policy/research capacity building, that there are major gaps in “hard” and “soft” skills that need to be addressed through formal education (i.e. graduate training), as well as post-degree professional development of working researchers.
Similarly, respondents indicated several areas of capacity building that would be useful to researchers in their respective countries (see Figure 22). Most are typically viewed as skills essential to effective outreach and engagement of policy actors. The most pronounced area relates to the ability of researchers to produce communications materials (articles, newsletters, policy briefs, speeches).
Respondents were asked their views on different ways to improve the relevance and usefulness of research through capacity building. Their views on the value of various capacity building activities are ranked below in Table 13 below.

Table 13 – Ranking of Types of Capacity Building to Improve the Relevance and Usefulness of Research (All Respondents)

<table>
<thead>
<tr>
<th>Type of Capacity Building</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Greater participation in global or regional research networks</td>
<td>75%</td>
</tr>
<tr>
<td>2. Greater availability of non-degree training in research methods and tools</td>
<td>69%</td>
</tr>
<tr>
<td>3. Better formal higher education in research methods and tools</td>
<td>68%</td>
</tr>
<tr>
<td>4. More research communication (policy briefs, media appearances, presentations, seminars, etc.)</td>
<td>67%</td>
</tr>
<tr>
<td>5. More regional or national research meetings on research</td>
<td>65%</td>
</tr>
<tr>
<td>6. Training and/or technical support/guidance in research communications and policy engagement</td>
<td>64%</td>
</tr>
<tr>
<td>7. More research publication (papers, articles, books)</td>
<td>64%</td>
</tr>
<tr>
<td>8. More research or policy conferences/annual meetings</td>
<td>47%</td>
</tr>
<tr>
<td>9. Study visits by researchers to various policy actors</td>
<td>40%</td>
</tr>
</tbody>
</table>

Of the top four ranking areas of capacity building, three lend themselves to inclusion in graduate training and professional development courses. Additional suggestions/comments provided in the response to this question, included:

- Development of some kind of national research agenda (one that comprehensively captures the diversity of research needs and interests);
- Faster research production and sharing to mitigate the effects of academic policies that slow down the research process;
- More regional links (presumably among researchers);
- More research funding and better information on national research;
- Fund raising for research that includes and active role by governments;
- Restructuring/consolidation of research bodies (along the lines being pursued in Jamaica in respect of STI);
- Internship opportunities for researchers in educational research centres;
- More national/government investment in social research and data collection at the population level;
- Investment in targeted survey research on a range of thematic population issues; and,
- The need for better data.
EMERGING FINDINGS: RESEARCH NEEDS AND PRIORITIES

In regard to research needs and priorities, all respondents were asked the following: “Thinking about the research needs of your country, which of the following do you see as needed in your country?”

All research subjects on the list were identified by respondents as needed to varying degrees. By frequency of selection, research needs cluster as follows, bearing in mind that some identified more than one area of research. Within each cluster, the level of attention to each subject area was more or less the same unless otherwise noted.

- Poverty, health, education, economic development, employment and livelihoods, growth and inequality, and impact evaluation, were the most identified subjects (each between 50% and 70%) except for economic development (78%).
- Environment, public expenditure analysis, programme evaluation, social protection, natural resources, and climate change, were the second most identified subjects (each between 40% and 50%).
- The third most identified cluster of subjects included governance, ICT, agriculture, food security, trade and regional integration, and gender studies (each between 30% and 40%)
- The fourth cluster included finance and resource mobilisation, urbanisation, microfinance, and security (national), with between 10% and 30%.

The “other” category included an interesting mix: cultural industries; impact of governance reform programmes; trade and cultural industries; extractives (mining); cultural industries (again); management in the private and public sectors; entrepreneurship; and small business internationalisation.

All three country group reports heard a great deal about perceived research priorities. In fact, more information than can be easily synthesised. In order to capture differences in the country groups, research priorities are presented below more or less as they appeared in each country group report drawing on interviews and the survey responses.

RESEARCH PRIORITIES IDENTIFIED IN THE CARIBBEAN COUNTRY GROUP

When asked, “if you could set the top five research priorities for the country over the next 2 years, what would they be?”, respondents came back with choices ranked in priority from 1 to 5 (not all respondents identified five priorities).

Because of the considerable overlap in the priority groups, only the topics identified as “1st Priority” are listed below. They have been grouped by affinity for convenience of the reader. The list is not presented in order of importance, and some subjects appear more than once because they were identified by more than one respondent as a 1st
priority. This suggests that there are a few areas where consensus on research priorities may be easier than others.

Economy and Growth – Includes: economic impact of national cultural industries; and development of successful entrepreneurs.

Environment – Includes: climate change and impacts on small island states; effect of global warming on small island/coastal states; climate impacts, and natural resource management.

Social Sector – Includes: health; population ageing and health; effectiveness of health spending; education (outcomes, quality, impact of ICT on learning); social protection; and, community policing

Public Sector Reform/Management – Includes: impact of governance reforms; impact analysis of various policing policies; planning; and, programme evaluations.

Priorities Identified in the Central America Country Group

Among the wide set of opportunities, interviewees identified a considerable variety of research priorities. During the mapping process, a large number of options were mentioned, however, the objective was to group together those terms with clear coincidences, trying to reduce the preferences to a few options in each country.

Table 14 lists the top five priorities defined by each group of actors in each country, both from the “supply” side (the research community) and the “demand” side (the policy community). Highlighted text indicates that the most frequent priorities common to both supply and demand views are human capital development, and corruption/accountability, followed to a lesser degree by “IRS and customs reforms”.

Table 14 – Supply and Demand Actors’ List of Research Priorities By Country (Central America Group)

<table>
<thead>
<tr>
<th>Country</th>
<th>Supply Side: Research Institutions</th>
<th>Demand Side: Policy Actors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belize</td>
<td>Multiannual Budget Formulation</td>
<td>National Plan for Infrastructure Governance Processes</td>
</tr>
<tr>
<td></td>
<td>Human Capital Investments</td>
<td>Supply chain for Medicines</td>
</tr>
<tr>
<td></td>
<td>Corruption and Accountability</td>
<td>Reform to Teachers’ Curricula</td>
</tr>
<tr>
<td></td>
<td>IRS and Customs Reforms</td>
<td>Strengthening Institutions</td>
</tr>
<tr>
<td></td>
<td>Justice & Security</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Institutionalization</td>
<td></td>
</tr>
<tr>
<td>Guatemala</td>
<td>Corruption and Accountability</td>
<td>Corruption and Accountability</td>
</tr>
<tr>
<td></td>
<td>National Budget Evaluation 1,000 Days Window actions</td>
<td>Strengthening Institutions</td>
</tr>
<tr>
<td></td>
<td>(Health)</td>
<td>IRS and Customs Reforms</td>
</tr>
<tr>
<td></td>
<td>Monitoring Education Quality</td>
<td>Competitiveness Promotion</td>
</tr>
<tr>
<td></td>
<td>Indigenous and Gender Issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Human Capital Development</td>
</tr>
<tr>
<td>El Salvador</td>
<td>Corruption and Accountability</td>
<td>IRS and Customs Reforms</td>
</tr>
<tr>
<td></td>
<td>Political Parties Reforms</td>
<td>Competitiveness Promotion</td>
</tr>
<tr>
<td></td>
<td>Delivery of Health Services</td>
<td>National Plan for Infrastructure</td>
</tr>
<tr>
<td></td>
<td>Justice & Security</td>
<td>Political Parties Reforms</td>
</tr>
<tr>
<td></td>
<td>Institutionalization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local Governance instruments</td>
<td></td>
</tr>
<tr>
<td>Honduras</td>
<td>Corruption and Accountability</td>
<td>IRS and Customs Reforms</td>
</tr>
<tr>
<td></td>
<td>Justice & Security</td>
<td>Competitiveness Promotion</td>
</tr>
<tr>
<td></td>
<td>Institutionalization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human Capital Development</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Competitiveness Promotion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corruption and Accountability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Although the selection of priorities by the experts differ in terms of actors and national concerns, some coincidences could be delimited for the purposes of the project.

- **Regional Coincidences** -- independently from the actors, regional coincidences include research priorities in corruption and accountability, commerce and FDI attraction, strengthening institutions, and human capital development. For the three countries in the northern triangle, justice and security is also an area for research opportunities. It is important to mention that respondents selected human capital development as a general topic, but some of them identified more specific subjects within this topic, like reform to teachers’ curricula, health issues such as medicinal supply chains, or “1,000 Days Window” actions.\(^\text{14}\)

- **Actor Coincidences** -- from the supply side (research institutions), the relevance of doing research related with the financial sustainability of the budget, corruption and accountability, and human capital specific aspects for health and education sectors. Transversal topics include disaggregation of the analysis by gender or ethnicity (indigenous people). From the demand side (policy actors), the relevance of doing research related with the reforms to strengthen the institutions, especially the ones in charge of commerce and FDI attraction, promotion of competitiveness and tax collection. Human capital was also identified as a research priority, but with emphasis in the analysis of public service delivery and service quality (with a focus on vulnerable groups).

Differences are present, maybe not in terms of topics, but in terms of prioritization. Topics such as infrastructure, sustainable use of natural resources, health, education, security, justice, governance, corruption & accountability, strengthening institutions, budget evaluation, growth and poverty are always potential subjects for doing research in the region, basically because of the lags in terms of development indicators. However, research institutions and policy actors tend to favour those

\(^{14}\) Actions related to nutritional health of women and children, particularly during the 1,000 day window between pregnancy and age two.
aspects that are relevant for the specific context of each country. For example, Guatemala, El Salvador and Honduras have interest in solving the high rates of criminality, while Costa Rica, Nicaragua and Panama are more focused on the sustainable use of natural resources and enhancing civil society participation.

Priorities Identified in the South America Country Group

Because only three countries were included in this group, it was possible to look at priorities by country.

For Bolivia

Public expenditure in health and education were key topics for many of the researchers that participated in the survey. Two also prioritized the issues of public resources and effectiveness as well as the tax system. In the interviews, the issue of both health and education appeared but not specific to public expenditure. For example, a researcher mentioned the importance of environmental aspects that impact the quality of health in the case of the rural sectors. In education, the dimension of quality in addition to access appeared as a priority. Researchers interviewed did not identify specific research interest in public expenditure and social services, but did note its value. Other relevant topics noted were: poverty and inequality, natural resource management (from an economic, social and environmental perspective – Bolivia has gas and mining).

For Ecuador

Although interest in health and education was less visible among the researchers in Ecuador compared to Bolivia, it is worth noting that there was high interest in the impact of public policies, impact evaluations, and public finance. This may be due to the observed increased budget in social sectors such as health and education during the current government (2007-2016). This increase in social expenditure, however, might suffer significant cuts given the reduction in the price in oil and the high dependence of the budget on oil revenue. In fact, it is expected that the budget for 2016 will be 18% lower than in 2015. Given these changes, researchers expressed the need to better understand how to effectively utilize resources in a scenario of fiscal constraint.

“Last mile of services” was also highlighted as a priority. Ecuador has significantly increased social spending, and coverage of key social services. However, interviews carried out with policymakers suggest that central government officials have little knowledge about how the “last mile” of service is working. This means that they do not know if the service is really being provided, especially in distant, hard to reach places. Nor do they know much about the quality of the services provided or the bottlenecks faced by staff at this level. For example, although there has been a significant increase in investment in medicines, there are various locations where users have not received them, and the central government does not understand why.
Coordination within the government was also raised. The Ecuadorian government has designed new models for coordination, essentially identifying a clear “coordinating” Ministry. For example, the Social Development Ministry has the role of coordinating and harmonising social services among several different ministries. In practice, this function still does not work well, and sector ministries tend to duplicate efforts, and overlap in activities is common. Coordination was identified by policymakers as a key mechanism for efficiency and effectiveness.

Decentralization and de-concentration was also flagged. Health and education services are centralized in Ecuador, but they are now being “de-concentrated”, meaning that while still managed by the central government, local level offices have been given more power in decision making. In some specific areas, such as medical and education infrastructure, local governments do play a role. However, there is a lack of clarity about these roles, and need to understand how to maximize the involvement of these institutions.

Administrative information is another area of need. In order to have better data, and make better decisions, policymakers identified the need for better administrative information from the services they provide. So far the central government depends mostly on data collected through household surveys and the social registry (for cash transfers). However, the government is expected to reduce the budget on surveys and rely more heavily on administrative data but have not yet devised a plan on how to implement this idea.

Other topics cited included poverty and inequality, economic transformation and employment, natural resource management (Ecuador has oil and mining projects).

For Paraguay

Paraguay had the least number of respondents noting interest in public expenditure in health and education on the survey, and no researcher participated in the interviews. For this reason, it is hard to determine the relevance of these issues. However, health and education are broadly mentioned as priorities, as well as analysis of public expenditure and impact evaluations. Other topics cited include poverty and inequality, social protection, and economic development.

Conclusions

As noted in the introduction, the mapping focussed on four areas of knowledge. Key aspects of these are noted below accompanied by the main conclusions drawn from the survey and interviews.

The first objective was to develop a picture of the nature of research and researchers present in each of the countries of focus, and the variety and types of organisations doing research. Mapping sought to reveal what has occupied research attention, where researchers are based (e.g. think tanks, CSO’s, private sector organisations, government agencies, universities), their profile (e.g. age, gender, education, institutional affiliation, capacity building experiences). In addition, the
survey sought information on how research was supported, who drives
the demand for research, preferences for different types of professional
development, researchers’ experience in policy engagement, and the
perceived value of different types of capacity building.

By and large information on all these dimensions was obtained, taking
into account the limitations of the mapping and relatively small number
of respondents. Three key conclusions are especially noteworthy:

3. **The institutional research environment** -- The first obvious
aspect is the much more visible presence of think tanks in Latin
America than the Caribbean group. Although the small size of
island states presents significant barriers to stand alone national
think tanks, efforts to develop regional independent think tanks
have not been very successful to date. In the specific countries
included in the Caribbean, the Dominican Republic seems to have
the most visible think tank community, and operates much more in
common with Central and South American countries (including
having self-described think tanks that are more advocacy
organisations than research bodies).

In the Central and South American countries a vibrant network of
think tanks has emerged, and although many play a advocacy role
more than they engage in technical production of research, there is
clearly an emerging regional “think tank” sector. There are also
some strong research networks in the region, although many that
refer to themselves as LAC networks are only marginally active in
the Caribbean.

All three country groups include countries that are heavily reliant
on one or two small, not so well endowed universities. There are
also examples in all three country groups of universities that have
developed exceptionally high quality programmes, and a few that
are formally pan-national schools. In respect of synergies, it would
be useful for GDN and others to consider how the regions top think
tanks and universities might play a stronger role in research
capacity building in small countries where human and financial
resources are limited.

Despite the differences among the countries in the three groups,
researchers in Latin America are a growing segment of the
academia sector, in some countries increasingly involved in
working closely with the private sector, universities, international
donors and civil society. The most significant characteristics of this
group are its relatively young age (especially in countries where the
majority of researchers have only undergraduate degrees), the
close to equitable participation among men and women in research,
the growing cadre with foreign experience such as post-graduate
studies, and the growing numbers involved in multi-sector or cross-
disciplinary networks.
4. **The relatively low production of research as measured my conventional publication metrics in many countries of all three groups** -- Earlier parts of this report provided some indication of the research publication experience in the country groups. Figures on journal publication are undoubtedly an important metric, and are an established indicator of national and institutional research activity. However the picture is not fully complete without a better indication of the overall population of researchers, the capacity or trends in the higher education sector in terms of “production” of graduates doing research, and a more comprehensive understanding of the varieties of research being produced. It is also important to be measured in accepting publication figures as an absolute indicator of research quality (although citation rates are a widely accepted indicator), nor of policy relevance or utility.

Researcher population figures are somewhat challenging as comparative international data favours research and development, mostly related to science, technology and innovation (STI). This misses potentially large segments of the research population who are engaged in social sciences, natural sciences, humanities, etc. Nor is available data all that complete for many countries in this study.

For example, of the 17 countries in this mapping study, WDI indicators on the researcher population (measured by FTE per million people between 2005 and 2012) are available only for seven countries (Bolivia, Costa Rica, Ecuador, Guatemala, Panama, Paraguay and Uruguay). 15 Only two of these – Costa Rica and Uruguay – are above the LAC average of 492 researcher FTEs per million, at 1,327 and 537 pm, respectively.

UNESCO’s figures are somewhat more encouraging. It charts significant growth in the absolute number of researchers (FTE) in a few of the countries. For example, Costa Rica had a researcher population of 6,107 in 2011, up from 548 in 2003, Ecuador, saw a growth from 983 researchers in 1996 to 2,735 in 2011. Figures for Caribbean countries are not available. 16

In *research output*, the 2014 figures are somewhat more comprehensive. For the Caribbean group, Barbados tops the list of scientific publications per million people at 182, followed most closely by Trinidad & Tobago (109), and the Bahamas (86). Jamaica stands at 47 (Grenada, by contrast is 1,430). For the other two country groups, the figures cluster as follows: a high of 241 (Uruguay); followed by Costa Rica (96), Panama (83), Ecuador (32), and Bolivia (19); the remainder between nine and four publications per million people.

15 FTE – full time equivalent
Most published research in CARICOM relates to health, led by Jamaica from the country group. The share of social science research is very small according to UNESCO’s 2008-2014 cumulative figures. For example, the Bahamas produced four social science publications compared to 42 in agriculture, and six in psychology. In absolute numbers, Trinidad’s social science output for the same period is more than three times that of any other country in the Caribbean group.

For the Central and South America country groups, the absolute number of all publications, as well as social science publications, is much higher -- for example 33 for Costa Rica, and 21 for Uruguay – however the share of social sciences among other fields is not all that different from that of the Caribbean countries (though research in “life sciences” rather than “education” dominates in Latin America). UNESCO’s figures do not disaggregate within the social sciences, so it is hard to know what sub-disciplines or topics dominate publication.

The picture of growth in research is somewhat discouraging. In scientific publication trends between 2005 and 2014, Jamaica has gone down from a high of roughly 175 publications in 2012 to 117 in 2014. Barbados and Suriname are also on a downward trend. Guyana, while starting from 14 in 2005 has gone up and down and stands at 23 in 2014. The Bahamas has grown from eight to 33 in the same period. Publication trends in the Central and South American country groups are more positive, with growth rates in the number of scientific publications since 2005 for Uruguay (94%), Ecuador (151%), Costa Rica (57%) and Bolivia (72%). All the other countries recorded positive trends but at lower rates.

As the UNESCO report points out, countries with “modest” research output can have among the highest citation rates. For the 2008-2012 period, research from Bolivia, Costa Rica, Ecuador and Panama was above the G20 average citation rate. It is worth noting that in every country in the two groups, the majority of published articles have foreign co-authors. With foreign co-authorship rates ranging from a low of 70.4% in Uruguay, to a high of 97.6% in Honduras, all countries in the group are well above the G20 average of 24.6% (only Brazil is close to this average at 28.4%).

The higher education picture is quite different, at least in Latin America where figures are provided by UNESCO. The vast majority of first degree graduates are in social sciences (56% in 2012), compared to next nearest cohort of engineering and technology graduates (15.3%). The share of PhD graduates is also highest for social sciences and humanities (48%), with natural sciences following at 14.75%. Up to 2000, these two fields were much closer in relative size, and at one point natural sciences dominated. When one looks at the number of doctoral graduates per million inhabitants in LAC in 2012, the picture in the country group is dim
to modest, ranging from 1 in Ecuador to a high of 25 in Paraguay. By contrast Brazil is 70, which is higher than China and South Africa at 39 and 36 respectively.

There are several "take-aways" from this picture:

4. That addressing the low level of post graduate-level trained researchers needs to be a priority in some countries. The large numbers of researcher (almost 40% in some countries) with training that has stopped at the undergraduate level has significant implications for research quality, and makes efforts to improve graduate rates and programmes a priority, and more important than they might be in other countries.

5. There is a need for so-called compensatory training and development – specifically professional development that makes up for the lack of academic coverage and levels of education that researcher are getting. Even among researchers with doctoral level training, the surveys indicated a desire for better exposure to non-degree professional development and training, such as in research methods and other technical skills (i.e. survey design). Both researchers and non-researchers in almost all countries expressed a view that the quality of research training in national universities was weaker than it should be.

6. The absence of a more systematic, comprehensive and comparative mechanism for monitoring the social science research environment at a national level, emphasising research use in the context of public policy, is clearly a gap. Surveys and mapping activities like this study can provide a picture but:

 a. are not much more than a snapshot;
 b. tend to overstate the anecdotal; and,
 c. have uneven coverage of many stakeholders.

It would be worth further exploring the utility and possible design features of an indexing instrument that can be applied at regular intervals to assess the societal visibility of research at a national level. This might include monitoring such things as research references in print, radio and television, in web and social media, and in public policy documents such as speeches, announcements, sector plans and strategies, consultation papers, etc.

The second objective was to develop a picture of the current and potential audiences for research primarily, but not exclusively, in the focus countries. Mapping looked at the audiences for policy oriented research (policy actors), their involvement in research demand as well as in funding.
The mapping evidenced some interesting differences in perspective on issues ranging from research quality, capacity building and research needs as seen from the perspectives of those who use research and those who produce research.

Spaces for engagements between policymakers and researchers appear to be limited. The interviews with users and producers of research portray a lack of engagement and understanding of each other’s needs and capacities. Both groups acknowledge that donors can play a brokerage role, by connecting and facilitating dialogue on a research topic.

Researchers face difficulty identifying critical bottlenecks and research questions for policy relevant research. The survey brought out some general research priorities. However, in the interviews carried out, the researchers had difficulty clearly identifying policy relevant specific questions.

Facing the challenge of being under continuous scrutiny from a more educated population, policy actors can, should they choose, become more explicit in demanding involvement of researchers and research institutions in assessing alternative ways to address a wide range of problems present in the region. Currently the opportunities for policy actors to articulate research needs, support mobilisation of research resources, and align timing and relevance are limited. The interest expressed by several senior officials in having a comprehensive national research index or framework underscores this. To many policy actors, the research needs/supply picture of their country is at present highly fragmented and abstruse.

Capacity development is also relevant to policy users, whether in enhancing informed decision-making on research design (to the point of being able to distinguish whether or not a research proposal will address the questions required) and in enhancing communication from researcher to policy actors within and outside of government. To inform thinking on capacity development strategy, including that of this research project, the mapping has identified the perceptions of researchers and users of research on a wide range of capacity gaps. For example, researchers prioritize developing their communication skills, while users of research believed that researchers need to improve their methods and analytical skills.

The third objective was to capture the extent to which research and policy attention has focused on public expenditure analysis generally, and on research specific to health and education in the countries of focus. Mapping sought to compare the level of research attention given to public expenditure analysis and/or service delivery with other areas of research attention by national researchers, as well as the policy actors’ interest in the same areas.

Closely related to this was the fourth objective of informing understanding of views on what the major areas for policy oriented
Research attention should be for the next 5 years. It sought to obtain perceptions of priorities and the drivers of research priorities, and to understand how research related to public expenditure in education and health is situated among other perceived priorities. Both areas are intertwined.

As is apparent from the surveys, health and education research are both among the top areas of current and recent activity by significant numbers of researchers (46% and 35% respectively), although a much smaller number (27%) indicated activity in public expenditure analysis. However, a significant number indicated experience in programme evaluation and impact evaluation, each of which is does or should involve aspects of expenditure analysis, at least in respect of examining the relationship between outcomes and cost.

It is also worth underscoring how researchers saw the top research needs of their country: 65% indicated health; 70% indicated education; 59% indicated public expenditure analysis; and, 67% indicated impact evaluation. Only economic development and employment/livelihoods received higher rankings (76% respectively).

Policy actors’ experience and views, not surprisingly, differ somewhat from those of researchers. In respect of research subjects of interest to policy actors in the past 10 years, the top three subjects were health, education and programme evaluation (51% each), followed closely by impact evaluation (48%), and public expenditure review (38%). All other subjects received lower response rates.

In terms of perceived research needs, policy actors cited in descending order of priority: economic development (72%); health (60%); environment (56%); employment/livelihoods (52%); growth and inequality, and programme evaluation (48% each); education and social protection (44% each); public expenditure reviews and impact evaluation (40% each).

Interviews with policy actors add to this picture of potential demand.

Instead of focusing on the size of budgets, policy actors are increasingly interested in alternative approaches to solving education and health problems. This is partly related to increasing concern about transparency and accountability of funds used for social programs, as well interest in the effectiveness of alternative policies and services.

The main take-aways in this area are:

4. That regardless of whether GDN follows researchers’ views on research needs or those of policy actors, there is sufficient commonality of interest to justify a focus on health and education research in the next stage of the project. For the six projects anticipated from across the 17 countries, it will not be difficult to find interested researchers or policy actors interested in these subjects. A more challenging aspect will be:
a. to decide if both health and education as broad subjects can be properly accommodated in a single project that only involves six research grants. It is worth considering choosing one or the other, and if so, probably selection of health would better reflect policy interest; and,

b. to determine within the subject(s) what specific researchable issues would resonate most.

5. It might also be useful to broaden somewhat the notion of research on health or education being approached solely through the lens of public expenditure. Given the interest in programme evaluation and impact evaluation, a conceptual framework that accommodates assessing the outcome of a specific policy or programme intervention (i.e. a new law, regulatory changes, an intervention to enhance access or uptake or service quality, etc.) can probably accommodate both financial and non-financial analysis.

6. Because of the widespread challenges in research-policy interaction, it could be helpful to use the March 2016 policy lab as a forum for refinement of the specific researchable issues. This will increase the likelihood of policy interest in the project, enhance cross-country comparability of findings, and ensure the research questions will yield answers that are useful to policy actors, and not only respond to researchers’ interests as is often the case.

Recommendations for Future Steps in the Project

Although the previous section has already flagged potential recommendations, a more sequenced set of ideas is provided below:

6. Because of the challenges of a 17 country “open” call, and limited number and size of grants, restrict the research stage to 2 countries from each of the country groups. Alternatively, because of the small number of countries in the South American group, preselect:

 a. two countries from the Caribbean group (Dominican Republic and Jamaica are suggested);

 b. three countries from the Central America group (TBD); and,

 c. a single country from among the three South America countries.

 This does not preclude the option of one research team covering two countries if acceptable to the policy actors involved (see below).
7. Structure the “call” to focus on two dimensions:

 a. researchers’ technical experience in health and/or education research (depending on whether both are included) and their experience in programme evaluations, impact evaluations and/or public expenditure analysis. do not require research proposals but rather seek statements of experience and capability; and,

 b. encourage researcher applicants to undertake preliminary policy engagement and describe this as part of their statement, including a description of specific discussions with ministries and CSOs to demonstrate interest in research. GDN might provide a guidance note for researchers to provide to policy actors, to introduce the project. In addition, GDN might directly advice policy actors in some or all selected countries and let them source or identify prospective researchers. Submissions should still be considered if it does not include information from possible policy participants but those that include some evidence of policy interest should be given more attention.

8. Ensure that policy actors and researchers from each country are present for the policy lab, and drop a country that cannot provide both.

9. Structure the policy lab to have three components:

 a. a high level methodological review on ways to approach programme or impact analysis that includes assessment of public expenditure effectiveness. It should be structured to help policy actors appreciate what makes good research of this kind;

 b. a structured discussion of specific policy questions associated with the health or education interventions that could be subject of research attention; and,

 c. presentations by researchers, reflecting on the lab discussions and presenting initial suggestions on their respective research designs, for open peer and resource person feedback.

10. Following the policy lab, researchers should be given a relatively short period of time (say a month) to come back to GDN with full research plans that have been “signed off” by policy actors during discussions back in their respective countries.

These ideas mean that policymakers would be an integral part of the policy lab, and that researcher participants will be assisted in effective
engagement that they otherwise may not do so well at. Consideration should be given to inclusion of topical experts from regional and international organisations who are already at the GDN conference, even if they are not from the selected countries.